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Chapter 1

Introduction

Optical properties of materials with band gaps in their electromagnetic spectrum has re-
cently attracted a great deal of attention. It was suggested that fundamental electromag-
netic processes such as spontaneous emission [1, 2], photon-atom interaction [2, 3], optical
energy transfer [4], and others are strongly modified at band gap frequencies comparing to
the similar processes occurring in vacuum. Photonic crystals, which are periodic structures
with a macroscopic period [5], present one of the examples of systems with electromagnetic
band gaps. The periodicity in photonic crystals gives rise to allowed and forbidden bands
for electromagnetic waves in the same manner as the periodicity in arrangement of atoms
causes the band structure for electrons in solids.

An important property of photonic crystals is occurrence of local photon states with
frequencies inside band gaps, when the periodic structure is locally distorted [1]. The
fact that an isolated defect in an otherwise perfect periodic crystal can give rise to local
modes with frequencies in forbidden gaps of a host structure is well known in solid state
physics. One could mention local states of electrons in semiconductors [6], lattice vibrations
[7, 8, 9, 10], excitons [11, 12, 13], and other elementary excitations. Local photons in a
photonic crystal are similar in many aspects to other types of local states. Their frequencies
belong to forbidden gaps, in 3D systems they split off the continuous spectrum only if the
“strength” of a defect exceeds a certain threshold [14, 15, 16]. At the same time, while all
other local states appear due to microscopic (of atomic dimensions) defects, local photons
require both an artificial macroscopical host structure and its macroscopic distortion. This
fact is obviously due to large wavelengths of electromagnetic waves in frequency regions of
interest.

It may seem apparent that microscopic defects cannot give rise to local photon states.
However, if one considers an electromagnetic wave inside a crystal, where it interacts with
crystal elementary excitations (phonons, excitons, etc.), one has to deal with a different
type of elementary excitation - polariton. When a spectrum of corresponding excitation
has a negative dispersion, a polariton spectrum has a forbidden gap in all crystallographic
directions. Then a microscopic polar impurity may cause a reconstruction of the spectrum
in the way that both polariton components including the electromagnetic one are localized
around the impurity [17]. The properties of these impurity induced states, local polariton
modes (LPM’s), are the subject of this thesis.

Different type of local photonic states was recently suggested in Ref. [18]. These states
are formed by an optically active impurity atom, which possesses some natural frequency
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(for instance, in a 2-level atom the natural frequency corresponds to the transition between
the levels) inside the forbidden range of the host crystal, it gives rise to the EM local state.
These states are analogous to “photon-atom bound” states [3] in photonic crystals, therefore
it is natural to call them polariton-atom bound states.

Contrary to defect modes in photonic crystals where the defect has the size comparable
to the wavelength of light [14, 15], LPM’s appear due to a microscopic defects in regular
crystal lattices. LPM’s can be considered as local excitations of a crystal coupled to the
electromagnetic field. Regular local phonons (excitons) also interact with the electromag-
netic field, but this interaction results mainly in absorption of light and radiative decay of
the states [8]. LPM’s arise in the region where electromagnetic waves cannot propagate and,
therefore, there are neither defect induced absorption of light nor radiative damping of the
local states. The electromagnetic interaction leads in this case to new optical effects, and
strongly affects the properties of the local states. It is well known, for instance, that local
phonons or excitons in a 3D system (as well as local photons in photonic crystals) arise only
if the “strength” of a defect exceeds a certain threshold. Local polaritons in systems with an
isotropic dispersion split off the allowed band without a threshold even in three dimensions
[17]. This effect is caused by the interaction with electromagnetic field, which results in the
Van-Hove singularity in the polariton density of states (DOS).

One of the optical effects caused by LPM’s that we study in Chapter 2 is resonant tun-
neling of electromagnetic wave with gap frequencies (see also Ref. [19]). We find that the
transmission coefficient at the frequency of the local polariton state increases dramatically
and can be as high as unity. In spite of the general understanding that local states should
produce local tunneling, this result still seems surprising because transmission of light is
affected by a defect with microscopic dimensions, much smaller than the light’s wavelength.
In addition, the energy of the electromagnetic component of local polaritons is much smaller
than that of the phonon component. Traditional wisdom based upon properties of conven-
tional propagating polaritons tells that, in such a situation, most of the incident radiation
must be simply reflected. As we will see here, this logic does not apply to LPM’s. The phys-
ical explanation of the result can be given on the basis of consideration of local polaritons
as the result of interaction between the electromagnetic field and local phonons. The latter
have macroscopic dimensions comparable with light’s wavelength, making the interaction
effective. An electromagnetic wave is carried through a sample by phonons, which tunnels
resonantly due LPM with mostly phonon contribution. We perform an analytical calcula-
tion of the transmission coefficient through a linear chain with a single defect and find that
the impurity indeed gives rise to the resonance transmission through the forbidden gap of
the polariton spectrum. The resonance occurs when the defect is placed at the center of
the chain. The transmission at the resonance becomes independent of the system size and
reaches the value of unity although its width decreases exponentially with the size.

When number of the defects increases, one can expect a crossover from a set of noninter-
acting LPM’s to an impurity band. We show first in numerical simulations that for a finite
concentration of impurities an impurity polariton band (IPB) develops inside the original
polariton gap.

Neglecting spatial dispersion of phonons, in Chapter 3 we obtain analytical expressions
with concentration of defects varying in the range 0 < p < 1, for DOS and the localization
length in the band. When the localization length of the single local polariton state exceeds
average distance between impurities, the method of microcanonical ensemble [20] gives DOS
of an effective system with a uniform distribution of impurities, and describes its renormal-
ization caused by local fluctuations of impurity positions. It also reveals localization of the
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states of IPB, which are all localized due to the one-dimensional nature of the model. We
found that the impurity-induced band has a number of interesting properties. The group ve-
locity of electromagnetic excitations propagating in this band is found to be proportional to
the concentration of the impurities, and can be significantly smaller than the speed of light
in vacuum. The analytical results show excellent agreement with numerical calculations in
the presence of spatial dispersion.

The knowledge obtained from analytical dependencies of DOS in the one-dimensional
model of Chapter 3 gives us an insight to a treatment of three dimensional mixed polar
crystals. The spatial size of local polariton states may be as large as the EM wavelength,
meaning that even at a very low impurity concentration, ~ 10?2 em ™3, the local polari-
tons significantly overlap. This fact allows us to develop a continuous approximation for
calculating properties of the polariton-induced band. Applying this approximation to the
one-dimensional case, we recover the results of exact analytical solution obtained in Chapter
3. In Chapter 4 we use this approximation to study the properties of the impurity-induced
polariton band in 3D such as dispersion laws and density of states of the respective excita-
tions. We derive the dielectric function of mixed polar crystal for an arbitrary concentration
of the defects. Studying the concentration dependence of poles and zeroes of the dielectric
function, we put forward a simple explanation of far infrared optical properties of mixed
polar crystals.

In Chapter 5 we propose a mechanism to make LPM’s tunable. We show that electron
transitions involving deep centers in semiconductors may lead to a reversible changes of
the frequency of the existing LPM’s. We also discuss an even more interesting possibility
of creating/eliminating LPM’s by changing the charge-state of a deep center. The ability
to create/eliminate LPM’s also leads to interesting possibility to dynamically control the
concentration of the polariton states. When the concentration of the deep centers is suffi-
ciently high LPM’s develop into an impurity polariton band. We show that in this case the
alteration of the local elastic constants can lead to the creation of the polariton band or to
the shift of the existing band (and/or to alteration of its shape). We also review materials
where these effects may be observed experimentally.

The formalism developed for 1D chain model of discrete non-interacting point-like dipoles
coupled with the retarded electromagnetic field can also be considered in an absolutely differ-
ent context. It can be shown that this model describes normal propagation of light through
a system of multiple quantum wells (MQW?’s), which were studied in a number of theoretical
and experimental papers [21, 22, 23, 24, 25, 26, 27]. LPM in this context corresponds to an
interface mode, which is localized only in the growth direction of MQW structure, but is
extended in the in-plane directions. The presence of interface modes in various multilayered
systems is not new. These modes arise and are well studied in ideal periodic structures, see
for instance, Refs. [28, 29] and references therein. What distinguishes the interface mode,
which arises in our model due to presence of a defect layer, is that its in-plane wave vector
k) is equal to zero, while localized interface modes in ideal periodic multilayers exist only
for kj > w/c, where w is the frequency, and ¢ the speed of light in the respective background
medium. This LPM, therefore, can be excited by an evanescent electromagnetic mode at
normal incidence, and may cause its resonant transmission. An application of the results
obtained in earlier chapters, to MQW?’s structures is of significant experimental interest, it
is discussed in Chapter 6.

In what follows we represent the results published in Refs. [30, 31, 32, 33, 34, 35, 36, 37]
without further reference to these papers.
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Chapter 2

Local polariton modes in one
dimension

2.1 Model

The system under consideration is a chain of atoms interacting with each other and with a
scalar “electromagnetic” field. Atoms are represented by their dipole moments P,, where
the subscript n represents a position of an atom in the chain. Dynamics of the atoms
is described within the tight-binding approximation with an interaction between nearest
neighbors only,

(2.1) (92 —w?)P, + ®(Pyy1 + Py 1) = aE(z,),

where ® is a parameter of the interaction, and Q2 represents a site energy. Impurities in
our model differ from host atoms in this parameter only, so

(2.2) Qi = Qgcn + Qf(l —¢n),

where Q3 is the site energy of a host atom, Q7 describes an impurity, ¢, is a random variable
taking values 1 and 0 with probabilities 1 — p and p, respectively. Parameter p, therefore,
sets a concentration of the impurities in our system. This choice of the dynamical equation
corresponds to exciton-like polarization waves, phonon-like situation can be presented in
the form similar to Eq. (2.1) with Q2 = Q3 + (1 —cn)(1 — Maes/Mpost)w?, where Mgy and
Myp,s¢ are masses of defects and host atoms, respectively.

Polaritons in the system arise as collective excitations of dipoles (polarization waves) cou-
pled to the scalar “scalar” electromagnetic wave, E(x,), by means of a coupling parameter
a. The electromagnetic subsystem is described by the following equation of motion

w? d’E

2
w
(2.3) —E(z) + i —47rc—2 ZPné(na — ),

where the right hand side is a the polarization density caused by atomic dipole moments,
¢ is speed of the wave in vacuum. The coordinate z in Eq. (2.3) goes along the chain
with the interatomic distance a. Eqgs. (2.1) and (2.3) present microscopic description of the
transverse electromagnetic waves propagating along the chain in a sense that it does not

5
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make use of the concept of the dielectric permeability, and takes into account all modes of
the field including those with wave numbers outside of the first Brillouin band.

This approach enables us to address several mathematical questions. A local state is
usually composed of states with all possible values of wave numbers k. States with large k
cannot actually be considered within macroscopic dielectric function theory, and attempts
of doing so lead to diverging integrals that have to be renormalized. The renormalization
procedure is rather arbitrary [18]. In our approach all expressions are well defined, so we
can check if a contribution from large k is important, and if long wave approximation gives
reliable results. Calculation of the integrals appearing in the theory in the 3D situation
requires knowledge of detailed information about the spectrum of excitations of a crystal
in the entire Brillouin band. This makes analytical consideration practically infeasible. In
our 1D model we can carry out the calculations analytically (in a single-impurity case) and
examine the influence of different factors (and approximations) upon the frequency of a local
state and the transmission coefficient. Using a certain caution, the obtained results can be
used to assess approximations in 3D situations.

2.2 Local polariton modes

Let us first derive an equation for the frequency of the local polariton state in the case when
only one impurity is present. In this case Eq. (2.1) can be presented in the form

(2.4) (Q2 —wh)P, + ®(Poy1 + Py 1) + AQ%5,, 0y P = aE(z,),

where AQ? = Q2 —Q2 in the exciton-like case and AQ? = (1— Mgy /Mpost)w? in the phonon-
like situation; the respective term describes an impurity at ng-th site. Let us introduce
Fourier transforms for site dipole moments

1 .
(2.5) P, = N ; exp (ikna) Py
and the field

(2.6) E(x) = Z exp (ikna) Ey,

k
where the wave number k runs over the first Brillouin band in Eq. (2.5), and from —oc to
+o0 in Eq. (2.6). Making use of the Fourier transforms and combining Egs. (2.1) and (2.3)
one can arrive at the following expression for Py

4mrow? 1 ,
2.7) |? = 03 — 28 cos (ka) - - 3 > | P = AQ?P,, emiknon,
ac® = o2 ( 27m>
= (ke =
C a

where k belongs to the first Brillouin band, —7/a < k < 7/a, and & is an arbitrary integer
representing the number of a band. The sum over k takes into account short wave compo-
nents of the electromagnetic field, and can be calculated exactly in 1D situation. Finally,
one obtains for the polarization the following equation

L G(n - o),

(2.8) P, = AQ2PH0 N
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where G(n —nyg) is a Green’s function of a pure system describing the response of the system
to the external excitation of the atomic component, and reads as

[cos(ak) — cos(2)] etk(n—mo)a

[w? — Q3 — 2 cos (ka)] [cos(ak) — cos(%)] — 222 sin(2)’

(2.9) Gn—mng) = Z

k

If one neglects the term responsible for the coupling with the electromagnetic field, the
Green’s function G(n — ng) is reduced to that of the pure atomic system. This fact reflects
the nature of the defect in our model: it disturbs only mechanical (not related to interaction
with the field) properties of the system. For n = ng, Eq. (2.8) has a nonzero solution only
if the following equation holds

dk =1

a AQ? /”/“ cos(ak) — cos(%)

21 J_n/q [w? — Q% — 2® cos (ka)] [cos(ka) — cos(%2)] — 2T sin(22)

(2.10)

where we replaced the sum over k with an integral according to the standard rule: (1/N) Y. =
(a/2r) [. This is the sought equation for the eigenfrequency of the local mode. It has a
real-value solution only if the solution falls into the gap between the upper and the lower
polariton branches. This gap exists only if the parameter ® in the dispersion equation of
the polariton waves is positive, and the effective mass of the excitations in the longwave
limit is, therefore, negative.

The integral in Eq. (2.10) can be calculated exactly, and yields the following form for
the dispersion equation

o 1 [eos(®) = o)  cos(%) - Qi(w)
210 t=an 2<I>D<w>[ VE@ -1 | JB@-1 ]

where Q12(w),

(2.12) Qip(w) = % [cos(%) + %} + %D(w),
(2.13) Dw) = \/[cos(%)_wg_(ﬁgo] _ 47(;? Sm(%)’

give the poles of the integrand in Eq. (2.10). The bottom of the polariton gap is determined
by the condition D(w) = 0 yielding in the longwave limit, aw/c < 1, for the corresponding
frequency, wy,

V@a

(2.14) wi ~ Qf —20%d .
where we introduce the parameters d? = 4wa/a, Q2 = Q2 + 2®, and take into account that
the band width of the polarization waves, ®, obeys inequality \/Ea/ ¢ < 1. The last term in
this expression is the correction to the bottom of the polariton gap due to the interaction
with the transversal electromagnetic field. Usually this correction is small, but it has an
important theoretical, and, in the case of strong enough spatial dispersion and the oscillator
strength, practical significance [17]. Because of this correction the polariton gap starts at
a frequency, when determinant D(w) becomes imaginary valued, but functions Q1 2(w) are
still less than 1. This leads to the divergency of the right-hand side of Eq. (2.11) at w
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approaching wy, and, hence, to the absence of the threshold for the solution of this equation.
This divergency is not an 1D effect since the same behavior was also found in 3D isotropic
model[17, 38]. An asymptotic form for Eq. (2.11) when w — wj in 1D situation reads

AQ2?
(2.15) Vw2 —wi ~ 7%

and differs by the factor of (dwla) / (C\/E) from the 3D case. Cancelation of the latter factor
occurs because of the singular behavior of the density of state of the polarization waves in 1D
situation. The upper boundary of the gap, wy,, is determined by the condition @1 (w) =0,
leading to

(2.16) wep = Of + &,

Eq. (2.11) also has a singularity at the w — wyyp, but this singularity is exclusively caused
by 1D nature of the system, and we will discuss local states that are not too close to the
upper boundary in order to avoid manifestations of purely 1D effects.
For frequencies deeper inside the gap, Eq. (2.10) can be simplified in the approximation
of the small spatial dispersion, \/Ea/c < 1, to yield
o Wa AQ?

1_ Lﬂg
\/w2_(~23+4<1> 20\/((»2—@%) (Qg+d2_w2)7

where Q2 = Q2 + 2® is a fundamental (k = 0) frequency of a chain compounded from
impurity atoms only. Two other terms in Eq. (2.17) present corrections to this frequency
due to the spatial dispersion and the interaction with the electromagnetic field respectively.
One can see that both corrections have the same sign and shift the local frequency into the
region between Q% and Q2. As we shall see below this fact is significant for transmission
properties of the chain.

(2.17) w? = Q2 — AQ?

2.3 Resonant tunneling via LPM’s

In order to consider transport properties of the model, one has to subject Egs. (2.1) and
(2.3) to the boundary conditions for the electromagnetic and polarization subsystems. We
assume that an incident and transmitted electromagnetic waves propagate in vacuum so
that the boundary conditions for Eq. (2.3) take the usual form

dE
E(0) = 1+ = ik, (1 -
(0) +7; 7n ik,(1—1)
, dE . :
(2.18) E(L) = texp(ik,L); p ik, texp (ik,L),

where k, = w/c is a wave number of the electromagnetic wave in vacuum, | ¢ |? and | r |?
are transmission and reflection coefficients, respectively, and L is the length of the chain.
The boundary conditions (BC) for dipole excitations can be chosen in the form

(2.19) Py =Py =7,
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where 0 < v < 1; N = L/a is the number of sites in the chain. v = 1 corresponds to the
chain with relaxed boundary conditions; v = 0 corresponds to the case with fixed terminal
points, which in theory of exciton-polaritons is known as Pekar’s boundary conditions[39].
In fact, after examining both types of BC, we found that the average (over different realiza-
tions) value of transmission coefficient is not sensitive to the particular choice of BC, but it
convenient in the current context to choose it in the form Py, = Py = 0.

Our first goal in treating the problem of the resonance tunneling is to convert the dif-
ferential equation (2.3) into a discrete form. We can do so considering separately free
propagation of electromagnetic waves between sites and its scattering due to the interaction
with a dipole moment at the site. Let E,, and E] be the magnitude of the electromagnetic
field and its derivative right after scattering at the n-th site. The electric field, E, remains
continuous at a scattering site, while its derivative undergoes the jump, which is equal to
—47k2 P,. Finally, one can derive the system of difference equations, that can be written
with the use of the transfer matrix, 7', in the form:

(2.20) Unt1 = Tpp,

where we introduced the column vector, v,, with components P,, Pn+1, E,, D, (D, =
E) /k,) and the transfer matrix, T},, that describes the propagation of the vector between
adjacent sites:

0 1 0 0
02 —w? « a .
(2.21) T,=| "1 ——5— gcoska gsinka
0 0 coska sin ka
0 —4rk —sinka  coska

The dynamical state of the system at the right end of the chain, which is represented by the
vector vy, can be found from the initial state at the left end, vg, by means of the repetitive
use of the transfer matrix, T':

N
(2.22) on = [ Twvo.
1

Eigenvalues of the T-matrix determine the eigenfrequencies of the respective pure system.
There exist four eigenvalues A, which can be grouped in pairs with the product of the
members of each pair being equal to one. The eigenvalues can be found as solutions of the
following dispersion equation:

02 —w? ak .
T) + 3 sin(ka) = 0.

(2.23) (A+ X! —2coska) (A +A 1+
In the band of propagating states, the solutions of Eq. (2.23) are complex valued numbers
with their absolute values equal to one. In this case the expression A+ A~! can be presented
in the form 2 cos(Qa), and with this replacement the dispersion equation (2.23) takes the
same form as the equation for poles of the Green’s function, obtained above, Eq. (2.9). In
the band gap of the polariton spectrum, the eigenvalues A become real valued and describe
evanescent modes of the system.

Analytical calculation of the transmission coefficient in the considered situation is not
feasible even in the case of a single impurity because of too cumbersome algebra. The
problem, however, can be considerably simplified if one neglects spatial dispersion of the
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polarization waves. In this case T-matrix can be reduced to a 2 x 2 matrix of the following
form

coska sin ka
(2.24) Tn = ( —sinka + By, coska coska + By, sinka ) ’

where the parameter 3,
draw
c(w?—0Q2)’
represents the polarizability of the n-th atom due to its vibrational motion. When the

spatial dispersion is absent one only needs the regular Maxwell boundary conditions given
by Eq. (2.18) to express the complex transmission coefficient, ¢, in terms of elements of the

(2.25) Brn =

resulting transfer matrix, 7N) = Hiv Tny

9 .
(2.26) t= = —~ = e kL
<T1(1 ) +T2(2 )) —1 (T1(2 ) - T2(1 ))

n the case of a single impurity the product of the transfer matrices, 7, can be presente
In th f a single i ity th duct of the t i tri b ted
in the following form

(2.27) TWN) — 7N=n0 Tdef X Fro—l

where the matrix 745 describes the impurity atom with Q, = ;. The matrix product in
Eq. (2.27) is conveniently calculated in the basis, where the matrix 7 is diagonal. After some
cumbersome algebra one arrives at the following expression for the transmission coefficient,
t:

2et*L exp (—kL)
2—fcotka)|[(1+¢)] + 2iexp (—kL) T cosh [ka(N — 2ng + 1]

(2.28) t=

15

where D = 2 +48 cot(ak)—4, T = e/ (sin(ka)V/D), k = | In(\)|/a is the inverse localization
length of the local state, and € = (Bqey — 5) / 2v/D. The last parameter reflects the difference
between host atoms and the impurity, and is equal to

2ra (0% — Q)
= w .
VD (? = Q) (w? - 03)
We have also neglected here a contribution from the second eigenvalue of the transfer matrix,

which is proportional to exp(—2kL), and is exponentially small for sufficiently long chains.
For € = 0 one has the transmission coefficient, tg, of the pure system,

(2.29) €

_ 2e'*exp (—kL)
1——(2—Bcotka)’

(2.30) to ;
VD
exhibiting a regular exponential decay. At the lower boundary of the polariton gap, Qo,

parameters § and k diverge, leading to a vanishing transmission at the gap edge regardless
the length of the chain. It is instructive to rewrite Eq. (2.28) in terms of tg:

to
(14¢)+iexp (—ikL) Tty cosh[ka(N — 2ng + 1]

(2.31) t=
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This expression describes the resonance tunneling of the electromagnetic waves through the
chain with the defect. The resonance occurs when

(2.32) 1+e=0,

the transmission in this case becomes independent of the system size. Substituting the
definition of the parameter ¢ given by Eq. (2.29) in Eq. (2.32) one arrives at the equation
identical to Eq. (2.17) for the frequency of the local polariton state with the parameter of
the spatial dispersion, ®, being set to zero. The transmission takes a maximum value of
unity when the defect is placed in the middle of the chain, N — 2ng + 1 = 0. The width of
the resonance is proportional to I'ty and it exponentially decreases with an increase of the
system’s size. It is interesting to note that the transmission becomes exactly equal to one
at frequency wy that is exponentially shifted from the frequency wq. s satisfying Eq. (2.32).
The detailed consideration of this phenomenon we postpone until Chapter 6.

Having solved the transmission problem we can find the magnitude of the field inside the
chain in terms of the incident amplitude E;,, at the resonance frequency. Spatial distribution
of the field in the local polariton state can be found from Egs. (2.3), (2.8), and (2.9) to
have the form E = E;exp [—(n — ng)xa]. Matching this expression with the outcoming field
equal to Ey,texp(ikL) for the field amplitude at the defect atom we have

(2.33) E4 = Ei,texp(—ikL) exp[(N — no)ka] .

For |t| being of the order of one in the resonance this expression describes the drastic
exponential enhancement of the incident amplitude at the defect side due to the effect of
the resonance tunneling.

2.4 One-dimensional dipole chain with macroscopical
concentration of impurities: numerical simulations.

In this section we present the numerical simulations of the transport properties through the
chain in the case of randomly distributed identical defects. The transfer matrix equation
(2.20) along with the definition of the transfer matrix Eq. (2.21) and boundary conditions
given by Eq. (2.18) and Eq. (2.19) provides a basis for our computations. However, it
turns out that straightforward use of Eq. (2.20) in the gap region is not possible because
of underflow errors arising when one pair of eigenvalues of the transfer matrix becomes
exponentially greater than the second one. In order to handle this problem in Appendix we
develop a new computational approach based upon the blend of the transfer-matrix method
with the invariant embedding ideas [40].

In our simulations we fix the concentration of the defects and randomly distribute them
among the host atoms. The total number of atoms in the chain is also fixed; the results
presented below are obtained for a chain consisting of 1000 atoms. For a given choice of the
defect frequency, 2;,the localization length of the local polariton state, l;,,4,is approximately
equal to 150 interatomic distances. The transmission coefficient is found to be extremely
sensitive to a particular arrangements of defects in a realization exhibiting strong fluctua-
tions from one realization to another. Therefore, in order to reveal the general features of the
transmission independent of particular positions of defects, we average the transmission over
1000 different realizations. We have also calculated the averaged Lyapunov exponent (the
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Figure 2.1: Frequency dependence of the averaged transmission coefficient
for small concentrations of the defects. The frequency is normalized by the
fundamental (k = 0) frequency of the pure chain, Qy. The low-frequency
boundary of the polariton gap is at w & 1.3 and is not shown here.
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Figure 2.2: The same as in Fig. 2.1 but for intermediate concentrations.
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Figure 2.3: The same as in Fig. 2.1 but for large concentrations.

inverse localization length, .44, characterizing transport through the entire chain) to ver-
ify that the averaged transmission reveals a reliable information about transport properties
of the system.

The results of the computations are presented in Figs. 2.1, 2.2, 2.3, 2.4, and 2.5. The first
three figures show the evolution of the transmission with the increase of the concentration of
the impurities. In Fig. 2.1 one can see the change of the transport properties at small con-
centrations up to 1%. The curve labeled (1) shows, basically, the single impurity behavior
averaged over random positions of the defect. With an increase of the concentration there is
a greater probability for two (or more) defects to form a cluster resulting in splitting a single
resonance frequency in two or more frequencies. The double peak structure of the curves (2)
and (3) reflects these cluster effects. With the further increase of the concentration the clus-
ters’ sizes grow on average leading to multiple resonances with distances between adjacent
resonance frequencies being too small to be distinguished. Curve (5) in Fig. 2.1 reflects this
transformation, which marks a transition between individual tunneling resonances and the
defect induced band. The concentrations in this transition region is such that an average
distance between the defects is equal to the localization length of the individual local states,
lind- The collective localization length at the frequency of the transmission peak, I5}2% . be-
comes equal to the length of the chain at approximately the same concentration that allows
to suggest the simple relationships between the two lengths: {72 = cl;q, where c stands
for the concentration. The numerical results presented in Fig. 2.4 clearly demonstrate this
linear concentration dependence of I7;%%  at small concentrations. For larger concentrations
as one can see from Figs. 2.2 and 2.3 the peak on the transmission coefficient is not so
well defined marking further development of IPB. Curves in Fig. 2.2 show the transmission

coefficient at intermediate concentrations, where localization length, I pqin, is bigger than
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Figure 2.4: Concentration dependence of the collective localization length,
lchain, normalized by the system’s size L.

the length of the system only in a small frequency region around the maximum of the trans-
mission, and Fig. 2.3 presents well developed IPB with multipeak structure resulting from
geometrical resonances at the boundaries of the system.

This figures reveal an important feature of the IPB: its right edge does not move with an
increase of the concentration. The frequency of this boundary is exactly equal to the defect
frequency, Q1, (which is normalized by Qo in the figures), and the entire band is developing
to the left of (; in complete agreement with the arguments based upon analytical solution
of the single-impurity problem. Moreover, the magnitude of the transmission in the vicinity
of Q;decreases with an increase of the concentration also in agreement with our remarks
at the end of the previous section. Fig. 2.5 presents the inverse localization length, I p4in,
normalized by the length of the chain for three different concentrations. It can be seen that
the inverse localization length at 2 significantly grows with an increase of the concentration,
reaching the value of approximately 17/L at the concentration as small as 3%. Such a small
localization length corresponds to the transmission of the order of magnitude of 10717,
which is practically zero in our computation. Further increase of the concentration does not
change the minimum localization length. These results present an interesting example of
the defects building up their forbidden gap.

From Fig. 2.5 it is also seen the development of the pass band to the left of {2; presented
above in Figs. 2.1, 2.2, 2.3, but at a larger scale. We can not distinguish here the details
of the frequency dependence, but the transition from the single resonance behavior to IPB,
marked by the significant flattening of the curve, is clear.



Concept of Local Polaritons ... Alexey Yamilov 15

20.0
15.0 —
(1) c=0.2%
% (2) c=0.8%
< (3) c=3.0%
=< 100
—

5.0

0.0 \ \ \ \
1320 1325 1330 1335 1340 1345 1350 1.355

Normalized Frequency

Figure 2.5: Frequency dependence of the Lyapunov exponent of the entire
chain for several concentrations in the frequency region of the defect band.

2.5 Discussion

Equation (2.31) demonstrates that the resonance tunneling via local polariton states is
remarkably different from other types of resonance tunneling phenomena, such as electron
tunneling via an impurity state [41], or through a double barrier. The most important fact is
that the frequency profile of the resonance does not have the typical symmetric Laurentian
shape. At w = 2y the parameter £ diverges causing the transmission to vanish. At the same
time the resonance frequency wr is very close to € as it follows from Eq. (2.17). This
results in strongly asymmetric frequency dependence of the transmission, which is skewed
toward lower frequencies. Though the transmission vanishes precisely at two frequencies:
at the low frequency band edge Qo and at the frequency Q; associated with the vibrational
motion of the defect atom, the way it happens is remarkably different. At the band edge the

transmission behaves as (w? —Q%)? exp (—1 /J/w? — Qg) while at the defect frequency it goes

to zero simply as (w? —Q%)2. These facts can be used to predict several effects that can occur
with increase of the concentration of the defects. First, one can note that with the increase
of the concentration of the impurities frequency ; eventually becomes the boundary of the
new polariton gap when all original host atoms will be replaced by the defect atoms. One
can conclude that the zero in the transmission at €; instead of being washed out by the
disorder, would become more singular. In other words one should expect that the frequency
dependence of the transmission in the vicinity of Q; will exhibit a crossover from simple
power decrease to more singular behavior associated with the band edge. Secondly, if factors
preventing transmission from exact vanishing (spatial dispersion, damping) are taken into
account, one should expect substantial suppressing of the transmission in the vicinity of
Q; with an increase of the concentration of the defects. Surprisingly enough, numerical
calculations show that this effect does take place even at rather small concentration of the
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defects. In Chapter 4 we will return to this problem when we will consider the formation of
IPB in 3D mixed crystals.

Resonant tunneling is very sensitive to the presence of relaxation, which phenomenolog-
ically can be accounted for by adding 2iyw to the denominator of the polarizability 8. This
will make the parameter e complex valued, leading to two important consequences. First,
the resonance condition becomes Re(g) = —1, and it can be fulfilled only if the relaxation
is small enough. Second, the imaginary part of € will prevent the exponential factor ¢g in
Eq.(2.31) from canceling out at the resonance. This restricts the length of the system in
which the resonance can occur and limit the enhancement of the field at the defect. Since
we only concern with a frequency region in the vicinity of 21, real, €1, and imaginary, &2,
parts of € can be approximately found as

2 2 _ (2
(2.34) € ~ dQ@ 5 Al 3 ~ 5 o
2c V& — AQ? (2 — 02)° + 44202
2yw
(2.35) €2 mé‘l

It follows from Eq. (2.34) that the resonance occurs only if (4yc)/(ad?) < 1. This inequality
has a simple physical meaning: it ensures that the distance between the resonance frequency,
wr, and 1, where the transmission goes to zero, is greater than the relaxation parameter ~.
This is a strict condition that can only be satisfied for high frequency oscillations with large
oscillator strength in crystals with large molecules in an elementary cell, and respectively
large values of the interatomic spacing a. Another interesting opportunity can arise in so
called atomic optical lattices, where atoms, trapped by a laser beam, form a lattice with
spacing practically equal to the wavelength of the trapping field [42, 43, 44]. However, taking
into account the spatial dispersion can lead to a more favorable situation for the tunneling
resonance in our model. As one can see from numerical results of [19] and the present work,
spatial dispersion does not change the transmission properties significantly. Therefore, one
can rely upon Eq. (2.31) to estimate the effect of the dissipation in the presence of the spatial
dispersion, assuming that it only modifies the parameter €. According to Eq. (2.17), the
interaction moves the resonance frequency farther away from ; undermining the influence
of the damping and leading to weaker inequality (vy€;)/® < 1. This condition can be
fulfilled, even for phonons with a relatively small negative spatial dispersion, and becomes
even less restrictive in the case of Frenkel excitons in molecular crystals.

For the imaginary part €2 at the resonance one can obtain from Eq. (2.35) the following
estimate

(2.36) g2 ~ min[(4yc)/(ad?), (v()/ @]

The requirement that €5 be much smaller than ¢g leads to the following restriction for the
length of the system L < (1/k) | In[es] |, with 2 given above. The maximum value of the
field at the defect site attainable for the defect located in the center of the chain is then
found as |E4| ~ |Ein||t|/\/22-



Chapter 3

Impurity polariton band in one
dimension

3.1 The model of one-dimensional polaritons and the
method of calculation

In the case of a single impurity with the resonance frequency ; we showed in Chapter 2
that the position of the local impurity state in the long-wave limit aw/c < 1 is determined
by Eq. (2.17), where the last term describes the shift of the local frequency from the
resonance frequency ; of the impurity due to coupling to the electromagnetic field. In the
case of the atomic interpretation of the model, this radiative shift is very small, but taking
into account the direct interaction between the atoms (the spatial dispersion of atomic
excitations) moves the local frequency farther away from ;. Eq. (2.17), however, can also
be applied to MQW?s in the case of so called short-period structures. In this case as we will
show in Chapter 6 the radiative shift described by Eq. (2.17) can be made large enough to
be observed experimentally. The transmission coefficient through the chain passes through
the maximum at wy close to wy,. and goes to zero at ;. For experimental observation of
this effect it is sufficient to have the radiative shift greater than homogeneous broadening
of the QW exciton resonance at 2.

The main object of interest in this Chapter is the properties of IPB in the case of finite
concentration of impurities. It is characterized by Lyapunov exponent (LE), A, which in our
case can be defined as [20]

) I
(3.1) A= lim —In*+—F——"

Loo L ||1)0|| ’

where L is the total length of the chain consisting of NV atoms. It is well-known that the quan-
tity defined by Eq. (3.1) is non-random (self-averages). It characterizes the spatial extent of
the envelope of system eigenstates, all of which are localized in one dimension (see Ref. [45]
and references therein). The same quantity also describes the typical value of the transmis-
sion coefficient, T, of an external excitation incident upon the system: Ty, ~ exp(—AL),
and through the Thouless relation [46] it determines DOS of the system. Calculation of
LE in the spectral region of the polariton gap of the pure system is the main task of this
section.

17
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3.1.1 The method of microcanonical ensemble

The major problem with calculating of LE or DOS in the region of impurity bands is
that a simple concentration expansion is not able to describe the impurity band. Electron
and phonon impurity bands have been intensively studied in the past (see, for example, Ref.
[45]). In the limit of extremely small concentration of impurities, (ply) /a < 1, it was proved
possible to provide a regular systematic of the arising states and use statistical arguments
to describe their DOS [7]. Another method used for this type of calculations employed the
so-called phase formalism (see Ref. [45] and references therein). This approach allowed
one to calculate DOS of impurity bands in different spectral regions, including exponential
behavior at the tails of the band for both small and large, (plg)/a > 1, concentrations. In
the case of LPM’s the localization length, Iy, of an individual local state can be so large
that one has to deal with the situation described by the latter inequality even in the case
of a rather small concentration of impurities. Therefore, in this Chapter we focus mainly
upon the properties of the well-developed IPB when individual LPM’s are overlapped. To
this end we use the method of the microcanonical ensemble, which was first suggested for
analytical calculations of LE in a one-dimensional single-band model of a disordered alloy
[20]. The advantage of this method over other methods of DOS calculations is that it allows
one to calculate simultaneously both DOS and the localization length. Its main shortcoming
is that, as we shall see later, this method is a version of “effective media” methods, and
as such it is unable to describe DOS near fluctuation boundaries of the spectrum. At the
same time the results obtained allow a clear physical interpretation and, as follows from
comparison with numerical simulations, they quite accurately describe properties of the
bulk of the impurity band.

The starting point of our calculations is the general definition of LE given by Eq. (3.1).
In spite of LE being a self-averaging quantity, it is convenient in practical calculations to
perform averaging over the random configurations of the impurities. The regular ensemble
of the realization is described by the fixed concentration of the impurities p, while their total
number can vary from realization to realization. Therefore one can distinguish two causes
for fluctuations: (1) local arrangements of the impurities and (2) the total number of the
impurities. The main idea of the method of microcanonical ensemble is to reduce the finite
size fluctuations in the system, eliminating the fluctuations of the total number of impurities.
Such an ensemble with a fixed number of impurities is called the microcanonical ensemble
in analogy with statistical physics. At the same time the result of the averaging in the limit
L — oo should not depend upon the type of ensemble used by virtue of the self-averaging
nature of LE. The key idea of the microcanonical method is based on the assumption
that with one cause of fluctuations eliminated, one can obtain reliable results when the
microcanonical ensemble average of (In(...)) is replaced by In{...). Such a substitution gives
an exact result in the case of commutating matrices, and leads to an excellent agreement
between analytical calculations and simulations in the case of 2 x 2 matrices with a single
band spectrum [20].

Using the microcanonical ensemble, one can evaluate the average over all matrix se-
quences using the following expression derived in Ref. [20]:

i NNT' 1N
(3.2) <1:[ Tn> = (DN) o) s (7o +.737'1)N ’

z=0

where 79 and 71 are host and defect matrices, respectively and x is a free parameter. The
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derivative in Eq. (3.2) then can be presented in the form of the Cauchy integral

(3.3) <1]:V[rn> = @;) _I%de%b(m),

where the contour of integration C' is taken on the complex plane around z = 0, v (z) is the
largest eigenvalue of the matrix 7o + 71, and the matrix D(x),

(3.4) D(z) = v N (=) (fo + 271)",

has eigenvalues not exceeding 1 in absolute value. In the limit of large N the above integral
can be evaluated by the saddle point method. As the result we arrive at the following
expression for the complex valued LE, A:

N
N 1 . .
A = ngy; 7 In llargest eigenvalue <1:[ Tn>]
1
(3.5) = - nv(ze) — (1—p)lnzo+plnp+ (1 —p)In(1 - p)],
where x¢ is defined by the saddle point equation
Olnv (z) B

(3.6) “omr |,_, P

The real part of hy given by Eq. (3.5) represents LE, while its imaginary part according to
Thouless [46] gives the integral density of states N(w) in the impure system:

(3.7) A = Re [X] ,
1 ~

(3.8) Nw) = —-Im [/\] :
T

The eigenvalues of the matrix 7y + 7, can be found from the equation
v 14z Bo + zf1
. = =2 k _—
(3.9) T2 > K (x) cos (ka) + Tz

where (g and $; are polarizabilities of the host and defect atoms, respectively.
It is convenient to rewrite Egs. (3.5) and (3.9) in terms of a new variable y = /(1 + z):

(3.10) w(y) =(waw+aj$ﬁ5=%@Hwﬂw,
(3.11) kolw) = 2cos(ka)+d*ka sin(ka)uﬂ%%,
(3.12) F(w) = d’kasin(ka) 9 — %

(w? = 0f) (w* - 97)°

In the long-wave limit € = ka < 1 functions F'(w) and k¢(w) can be simplified and presented
in the form, which clarifies their physical meaning:

Flw) = €f(w),
Ko (w) ~ 2+ 627({"))7
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where f(w) is defined according to

&> (QF — OF)

(313) f(w) = (wQ _ Q(Q))(w2 _ Q%)

and represents the difference 8; — Bo between polarizabilities (2.25) of the impurities and
host atoms. Function y(w) defined as

d2

is the longwave dielectric function of the pure chain.
Similarly, Eq. (3.5) transforms into

~ 1—
315 3) =11 = @) (o)) - [pin 2L 4 1= pym 20D,
with the saddle point equation reading as
1—-yF
(3.16) T
(ko +yF)" —4
Y=Yo

The choice of the sign in Eq. (3.16) is determined by the requirement to use the greatest
of the eigenvalues v. Introduction of the new variable y turns « (y) in a linear function of y
essentially simplifying future calculations.

3.2 The Lyapunov exponent and the density of states

3.2.1 Boundaries of IPB

Dielectric function y(w) determines the frequency region of the polariton gap: for Q2 <
w? < Q% + & it is negative, and hence, propagating modes do not exist in this region. We
shall assume that the defect frequency Q2 obeys the inequality Q2 < Q% < Q2 + &2, so
that IPB develops inside the gap of the original spectrum. As we already mentioned, the
approach we use below belongs to the class of effective-medium approximations since we
neglect here certain kinds of fluctuations in the system. It is natural to expect, therefore,
that within this approach the impurity band would have well-defined spectral boundaries
outside of which the differential DOS remains exact zero. Our first goal is to determine these
boundaries and find the concentration dependence of the width of IPB. The differential DOS,
p(w) = dN(w)/dw, takes on non-zero values when A(w) acquires a non-constant imaginary
part. Rewriting Eq. (3.15) in the form

(3.17) Aw) = é {ln B (no +yoF £ %)] - [pln%‘] +(1-pn 11__'1/;] } :

one can see that in the case of real yo, Im A(w) can be either zero or 7 (the latter happens
when the argument of In is negative). In both cases differential DOS is obviously zero, and
it can only take on a non-zero value when yo becomes complex. Eq. (3.16), which defines
Yo, is formed by a polynomial of the third order with real coefficients; therefore it has either
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three real roots or one real solution and a complex conjugated pair. In order to describe
formation of IPB, one has to select the root, which has a complex component in a certain
frequency interval and yields positive LE. Comparison with numerical simulations shows
that the choice of only one of three saddle point, according to above mentioned criteria,
produces the correct description of the impurity band. It is not difficult to show that at the
frequency where yo(w) becomes complex, the derivative dyo /0w diverges. This fact gives us
an explicit equation for the spectrum boundaries. From Eq. (3.16) one can find that the
divergence occurs when yq satisfies the equation

YWF[F(1—p)+ko + g [koF(1—3p)+ki—4]
(3.18) +  yoko (F — 2k3 +4) + p(kg — 4) = 0.

Eqgs. (3.16) and (3.18) define the concentration dependence of the boundaries of IPB. An
approximate solution of this equation can be obtained as a formal series in powers of param-
eter € = ka. It will be seen, however, from the results that the actual expansion parameter
in this case is 1/plyp < 1. The solution of Eq. (3.16) with the accuracy to €2 can be obtained
in the form:

y=p_p(1_p)ﬁe_}_p(l_p)2(pf_7)£((;;_213)2_fp(1_p)f2627

where y = p is the only non-vanishing zero order approximation for y. Since two other
solutions, y = 0, correspond to a singular point of the integral (3.3), the chosen solution
y = p represents the only saddle point accessible within our perturbation scheme. Using
additional criteria outlined above we verify that the solution given by Eq. (3.19) correctly
reproduces the behavior of LE. Substituting Eq. (3.19) into Eq. (3.15) one finds the complex
LE in the long wavelength approximation:

~ W p(1 —p)f2(w)
(3.20) Aw) = - ( pf(w) —v(w) — me) )

(3.19)

According to Eq. (3.20), M(w) acquires an imaginary part at frequencies obeying the in-
equality

(3.21) pf(w) —v(w) <0,

The boundaries are determined by the respective equation pf(w)—~(w) = 0, which coincides
with the long wavelength limit of Eq. (3.18). This equation determines two points where
pf(w) —v(w) changes sign to negative:

(95 + 9% + d?) — V(98 + & — OF)? + 4d%(Qf — W)p

(3.22) wi 5 ,
- (408 +d)+ V(R +d - 07) +4d2(0F - Of)p
pu 9 .

The first of these solutions belongs to the initial polariton band-gap and as such represents
the low-frequency boundary of the new impurity band. The second one lies outside of the
gap and is a bottom frequency, modified by impurities, of the upper polariton branch of
the initial spectrum. These two frequencies, however, are not the only points where the
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expression pf(w) — y(w) turns negative. Two other points are

(3.23) wy = 0,

wizu = Q%a

and the change of the sign at these points occurs through infinity of pf(w)—-v(w) rather than
through zero. These two frequencies do not depend upon the concentration of impurities and
present, therefore, stable genuine boundaries of the spectrum. This property of Qo and € is
due to their resonance nature (they correspond to the poles of the respective polarizabilities)
and disappears when, for example, the spatial dispersion is taken into account. At the same
time, the numerical simulations from previous Chapter, in which the spatial dispersion was
taken into consideration, indicate that the shift of these frequency from their initial values
is negligibly small for realistic values of the inter-atom interaction parameter ®, even for a
relatively large concentration of impurities.

These four frequencies set the modified boundaries of the initial polariton spectrum
of the pure system (w2, wp,), and boundaries of the newly formed IPB (w7,, wj;). The
lower boundary of the forbidden gap of the crystal, Qg, is not affected by the impurities
- the singularity in the polariton DOS at this point survives for any concentrations of
defects. The upper boundary of the band gap, wp,, shifts toward higher frequencies with
the concentration and when p = 1, it coincides with the upper band boundary of the new
crystal, Qf = /02 + d2. Frequencies w; and wj, give approximate values for the lower
and upper boundaries of the impurity induced pass band which arises inside the original
forbidden gap Qo < wy < wiy, < /N2 + d2. IPB grows asymmetrically with concentration:
while its lower boundary moves towards 0y with an increase of the concentration, the upper
edge remains fixed at w;, = Q3. Such a behavior of IPB agrees well with our numerical
results from Chapter 2.

The width of IPB defined in terms of squared frequencies A7, =w?, —w? can be found
from Egs. (3.22) and (3.23) as

(3.24) A2 = V(O +d - 07)° + 4d2(£§ —p— (B +d -0}

For 1 not very close to the upper boundary of the initial polariton gap, Qr = 1/Q3 + d2,
the linear in p approximation is sufficient to describe the concentration dependence of the
band width

d2 Q2 _ Q2
(3.25) A2~ T D

0% +d? — OF

When 2, however, happens to be close to Q, a crossover is possible from the linear
dependence (3.25) to the square root behavior:

(3.26) A2~ [d2(02 — Q2)p.

The condition for such crossover to occur is

(0 + & - 23

1 ~ - 7
CPE e -0)
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3.2.2 The Lyapunov exponent and the density of states far from
the spectrum boundaries

Using Eqgs. (3.7), (3.8) and (3.20) one can calculate LE and the integral DOS for different
regions of the spectrum. For allowed bands, (0,Q0), (wi, Q1), (Wpy; 00), one has
rd-pf*w

(327) )\(w) = —mz€+ 0(62),

N@ = 2Vl +0@);

for forbidden bands, (0, wir), (Q1,wpy), we obtain

Nw) = 0.

One can see from Eqs. (3.27) and (3.28) that within allowed bands, DOS appears in the
zero order of the formal expansion parameter e, while LE starts from the first order. For
the forbidden bands the situation is reversed: LE contains a term of zero order in €, while
DOS in this order disappears. This observation suggests a simple physical interpretation of
the microcanonical approximation in conjunction with the expansion over e. Analysis of the
series in this parameter shows that the actual small parameter is a/(plo) = l4e¢/lo, where
lgey is a mean distance between impurities. The zero order expansion in this parameter can
be interpreted as a uniform continuous (lgey — 0) distribution of impurities with concen-
tration p. The results in this approximation then corresponds to IP which would exist in
such a uniform system. The parameter l4.f /lo in this case is a measure of disorder in the
distribution of impurities, which leads to the localization of excitations described by DOS
in Eq. (3.27) with the localization length, [~! = ), presented in the first line of the same
equation.

Let us now consider frequencies in the interval w € (0, Q) U (Q}J, oo), where pass bands
of the pure chains composed of either host or impurity atoms overlap. The DOS in this
region can be written in a physically transparent form

(3.29) N(w) = /(1= p) N (@) + pN?(w);

where Np(w) and N; (w) are integral DOS in pure chains containing host atoms or impurities,
respectively. In the remaining portion of the initial spectrum w € (wyp, Q%) (but not very
close to the boundary w,,, where the expansion ceases to be valid) DOS can be presented as
N(w) = /(1 — p) N3(w) — pl}(w), where l; is the penetration length through the polariton
gap of the 100% impure chain.

Our main goal, however, is obtaining DOS and LE of IPB, w € (w;, Q). Near the center
of this region, DOS can be presented in the following form

1 4|y|we W — We 2
(3.30) N (w) 1+ o (w—wc)+0<( 7 ))

~

Y

where w, is the center of the impurity band, which in the linear in p approximation is

, 1
(3.31) we = Q7 = SAL,



Figure 3.1: LE for a chain with a defect concentration of 10 % (solid line)
in comparison to a pure system (dashed line).

where A?  is the width of the band in terms of squared frequencies defined in Eq. (3.25).
The first term in Eq. (3.30) represents the total number of states between w;; and the center
of the band; it is interesting to note that this number does not depend upon concentration
of impurities. The coefficient at the second term gives the differential DOS at the center
and can be rewritten as

(3.32) plog) = 2lwe _ 2

h 7rl0pd2 B 71'l05’

where § = A? /2w, is an approximate expression for the impurity band width § ~ Q; —wj.
This DOS has a simple meaning of the average density of states uniformly distributed
through the entire band over the distance equal to lp/2. In one dimensional uniform sys-
tems the wave number of the respective excitations, k, is simply connected to N (w): k =
7N (w). The differential DOS would in this case be proportional to the inverse group ve-
locity. Accordingly, 1/mp(w.) given by Eq. (3.32) can also be viewed as a group velocity, v,
of excitations in the center of our IPB in the case of the uniform distribution of impurities.
The expression for v can also be presented as

d2
(3.33) v=——mpe K¢,

which demonstrates that polariton excitations of the impurity band have much slower ve-
locities not only compared to ¢ but also to the velocities at both regular polariton branches.



Figure 3.2: Dependences of LE (solid line) and DOS (dashed line) on con-
centration for a frequency in the interval Qy < w < ;.

Expanding Eq. (3.27) for LE about the center of IPB, we obtain a parabolic frequency
dependence of the localization length of the impurity polaritons

A w) ! = 207 (W w2\
(3.34) 1 (w) = A (w)™" = 2o (plo) [1 pz ( = )]

One can see from this expression that ! (w) reaches its maximum value 2pl? at the center of
the band. It is important to note that the localization length here grows linearly with the
concentration, whereas it is LE that grows with concentration for frequencies outside of IPB.
An increase of the concentration of the impurities also results in fast (o< 1/p?) flattening of
the maximum in the localization length, the fact we noticed in our numerical simulations in
Chapter 2.

The frequency dependence of LE, defined by Eqs. (3.15) and (3.16), is shown in Fig. 3.1.
For frequencies corresponding to the impurity band, LE drops sharply (the localization
length increases); it then diverges at the upper boundary of IPB. This divergence has the
same origin as LE divergence at the lower boundary of the band gap of the original crystal,
where due to the specificity of the polariton spectrum, the wave vector becomes infinite.
The concentration dependence of LE and integral DOS for some frequency wg € (q,1)
is shown in Fig. 3.2. For p = 0 this frequency belongs to the forbidden gap, thus DOS is
zero. With an increase of the concentration LE decreases (the localization length increases).
For the concentration when the lower boundary of IPB crosses wg, DOS becomes non-zero
and in A(w) the crossover between behaviors described by Egs. (3.28) and (3.27) occurs. In



Figure 3.3: Comparison of LE calculated with (dashed line) and without
(solid line) spatial dispersion in the vicinity of Q;. The concentration of
defects for both curves is 1 %

Fig. 3.3 we compare the results of our analytical calculations with numerical simulations from
previous Chapter. The comparison shows an excellent agreement between numerical and
analytical results, confirming the validity of the microcanonical method in the considered
limit. In addition, since numerical results were obtained with the spatial dispersion taken
into account, the comparison shows that the model with dispersionless phonons produces
reliable results for LE even not very far away from the spectrum boundaries.

3.2.3 The solution in the vicinity of the spectrum boundary. Non-
analytic behavior.

The results obtained in the previous section are clearly not valid for frequencies close to the
band boundaries w;; and wp,,, where pf —+v = 0 and the second term in the expansion (3.19)
diverges. It is well known that perturbation expansions in disordered systems usually fail
in the vicinity of boundaries of the initial spectrum of the system unperturbed by disorder
[45]. The regions in the vicinity of these special frequencies w; and wy, require special
consideration. Attempting to regularize our e-expansion, we shall seek corrections to the
zero order solution in the form

(3.35) y =p+ Be®

admitting a possibility of fractional values of «, and, hence, non-analytical behavior of the
solution. We also introduce a new variable ( which determines the proximity to either of
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two frequencies wj; or wpy:

(3.36) pf =7 =Ce® .

Substituting these expressions into Eq. (3.16) and equating the lowest order terms we see
that the equation can only be satisfied for @« = o/ = 2/3. In this case we find that the
parameter B introduced in Eq. (3.35) obeys the equation

p(1-p)f
3.37 ——=+4+B=0.
(3:37) 2v/(+Bf
The substitution of y given by Eq. (3.35) in the condition for the spectral boundaries
presented by Eq. (3.18) allows one to obtain an exact expression for the renormalized
boundary

4/3
(3.38) pf—v= l3p2/3(1 — p)2/3 (_Tf) ] 23,

that modifies Eq. (3.21). The shift is small by virtue of smallness of €2/3. In the lowest
order in €, the new positions of the band edges for small p are
- @ -a)”

0 \2/3
1 -
+3(4Plo) ]’
4 (93 - 9F)

1/3
2, = 4120 g 2
“pu Lt a2 — (02— Q(g))p [ 3 (16pl0 )

where we again encounter a/(ply) as a true small parameter of the expansion. It is inter-
esting to note the different character of non-analytical corrections to the positions of the
boundary of IPB @2 and the bottom of the upper polariton branch Gfm. They have frac-
tional concentration dependence with the correction to &fm being much stronger in the limit
a/(plo) < 1.

Now let us consider the modification of LE and the integral DOS due to the nonanalyt-
icity. Substituting Eq. (3.35) into Eq. (3.15) the complex LE can be written as

& (03 - 03
(3.39) &y 0f — (6 %)

(3.40) X:—I%e‘l/:’): \/(pf—'y)+Bf62/3-e.
This expression explicitly demonstrates the crossover between analytical and nonanalytic
behavior. When frequency w lies far from the initial boundary |pf —~| > Bfe*/3, one
recovers the term proportional to € with the same coefficient as in Eq. (3.20), whereas in
the opposite limit [pf — | <« Afe?/3, when we approach the boundary, the leading term
gains fractional power and becomes o €*/3.

At the vicinity of the renormalized spectral boundary, Eq. (3.39), DOS p(w) = 0 to the
left of &; and for w > Wy it can be obtained as

1/2
(3.41) =21 o =

W) o 2 — gy

where v and [y are evaluated at w = ;, and we have neglected the renormalization of the
boundary when calculating the coefficient in p (w) . In this approximation the frequency and
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concentration dependence of DOS does not change as compared to the one obtained from
the non-renormalized expansion (3.27). It is interesting, however, that the renormalization
brings about an additional numerical factor of 3 in Eq. (3.41), which is absent in the
non-renormalized expression. This frequency dependence is typical for excitations with the
quadratic dispersion law in the long-wave approximation. The main characteristics of this
dispersion law is the effective mass m, which can be found from Eq. (3.41) as

_ 9 99 fwa?
(342) m= 2pd2  2pc? ( d ) )

It is interesting to compare this expression with the effective mass of the upper polariton
branch of the pure system at the bottom of the band 2mg = (wr, /dc)?. The two expressions
have a similar structure if one introduces a “renormalized speed of light”

(3.43) ¢ =c\/p/9>.

Though the introduced parameter ¢ does not have a direct meaning of the speed of the
excitations, it shows again that the excitations in IPB are considerably slower than their
regular counterparts, with a similar dispersion law at the spectrum boundary as well as at
the center of the band. Unlike, however, the center-of-band situation (3.33) the renormalized
velocity at the edge is proportional to the square root of concentration.

LE in the vicinity of Wy is represented by different expressions for frequencies below and
above w; respectively

1 1 \1/3 12 (710)1/2 L2
(3.44) A= & (_) 2O )
1 1 Ve 12 ~lo .
= _— - 1 Y ol U 2 _ ~2
A 21y <4pl0> l d2 (4l0p)1/3 (w wzl) ’

reflecting a discontinuity of its frequency derivative at the spectrum boundary. LE itself is,
of course, continuous at w;, giving rise to the localization length [ = 2l (4plo)1/ % at the
edge of the band. It is interesting to compare this expression with the localization length
at the center of IPB, Eq. (3.34). They both grow with the concentration but the latter one
is much smaller and demonstrates slower fractional concentration dependence.

At the upper impurity band edge Q; integral DOS, N(w), diverges causing much stronger
singularity in the differential DOS than at the lower boundary wy

dwp1/2

4 W)= — "%
(3.45) P = — T
which is typical for DOS in the vicinity of resonance frequencies. Comparing this expression
with a similar formula for a pure chain, one can again interpret this result as a renormaliza-
tion of the velocity parameter ¢ by the concentration of impurities, which is different from
that presented by Eq. (3.43) by a numerical coefficient only.

The last spectrum boundary is the bottom of the upper polariton branch Qy. The
spectrum in the vicinity of this frequency exists in the absence of the impurities, which are
responsible for two effects in this region. First they move the boundary from Qj, to higher
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frequencies [Eq. (3.39)], and second, they increase the effective mass of the upper polariton
branch, such that the differential DOS in the frequency region above ‘:’124: becomes

_ 1 w p| 4 (01 - %) 2
(3.46) plw)=— @~z ()" '3 [W%—éé)]

This expression can also be interpreted as a renormalization of the speed of light c.

3.3 Discussion

In this Chapter we presented a detailed study of IPB of excitations, which arise in the gap
between lower and upper polariton branches of a linear chain with dipole active atoms. We
have also studied impurity-induced effects on properties of the regular polariton branches.

We found that the dispersion law of the impurity band excitations at the lower frequency
spectral boundary resembles that of the upper regular polariton band, but with a signifi-
cantly (by a factor of p'/? < 1) reduced effective mass. At the higher frequency edge of the
band, the wave number diverges in a manner similar to the regular lower polariton branch
with a velocity parameter again reduced by the same factor. The group velocity of the ex-
citations near the center of the band, as well as is the localization length, is proportional to
p. The latter, however, demonstrates a parabolic frequency dependence with the curvature
of the parabola falling off with increase of the concentration as 1/p?. LPM’s are drastically
different from impurity-induced polaritons studied in Ref. [47]. The authors of the latter
paper considered excitations of an ordered chain of two-level atoms embedded in a polar 1D
crystal. Most significantly, the effective mass of polaritons of Ref. [47] is negative at the
long-wave boundary of the spectrum while our excitations have a positive effective mass in
this region; concentration dependencies of the effective mass and the band width also differ
significantly.

The regular expansion in powers of the parameter l4c5/lo produces diverging expres-
sions at the boundaries of the zero order spectrum. Allowing for fractional powers in the
expansion, we obtained a finite regularized expression for the density of states and the lo-
calization length at the boundaries. It is interesting to note that renormalized DOS at the
lower boundary of IPB differs from its initial form only by a numerical factor of 3, while the
position of the boundary is shifted toward lower frequencies.

The considered model gives us an insight on how to describe the properties of excitations
that arise in 3D polar dielectrics with some special type of impurities. In this case an
experimental significance of the results presented in this Chapter is affected by two factors:
absorption due to different kind of anharmonic processes, and the one-dimensional nature of
the considered model. Effects due to absorption were studied numerically with absorption
introduced phenomenologically. We found that at low enough temperatures IPB survive the
absorption and can be observed. As for the one-dimensionality of our model, it is generally
accepted (see for instance Ref. [48]) that one-dimensional models give a fair description of
tunneling in the limit of small concentrations (lge¢/lo 3> 1). We deal with the opposite limit;
however, our zero order results could describe the dispersion law of excitations in the real
three dimensional medium propagating in one specified direction (for example, the direction
with the highest symmetry). Disorder in this case would lead, of course, to scattering
and deviation from one-dimensional geometry, but effects due to disorder are much weaker
in three dimensions, and would not probably inhibit an observation of a defect induced
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transparency in the frequency region of a polariton gap. Besides, as we have mentioned
before, viability of one-dimensional models in describing dynamics of mixed crystals had
been tested by enormous studies in the past [49]. In the next Chapter we will use the
knowledge obtained here to build a model of IPB of a 3D mixed polar crystal.



Chapter 4

Concept of LPM and optical
properties of mixed crystals

4.1 Introduction

The optical properties of mixed polar crystals have been attracting a great deal of interest
since the 1950’s. Main efforts have been directed to experimental and theoretical studies
of the concentration dependencies of fundamental transverse (TO) and longitudinal (LO)
phonon modes, and to the fine structure of spectra in the frequency region between them
(Restrahlen band). Reviews of earlier experimental and theoretical works in this area can
be found in Refs. [50, 51]. In spite of the disordered nature of mixed crystals, it is usually
possible to observe both TO and LO modes of pure crystals at both ends of the concentration
range, as well as features associated with disorder [50, 51, 52]. This is usually done in
reflectance or transmittance experiments by identifying the maxima of Im(e) and —Im(1/e)
with TO and LO modes respectively, where € is the dielectric function [53].

The term mixed crystals is usually applied to materials in which the concentration of
each component is large, so that no component can be considered as a system of independent
impurities. At smaller concentrations the dynamics of impure systems is described in terms
of defect states, which are either localized or quasilocalized depending on whether they fall
into forbidden or allowed bands [7, 8, 9, 10] of the pure system. The transition from low
to high concentration behavior occurs when the average distance between defects becomes
of the same order as the localization length of the individual states. In the case of the
local phonon states, the localization length is of the order of a few lattice constants, and
the respective transition concentration is of the order of ~ 10'® em™3. Most of the studies
of mixed crystals were focused upon combinations of alkali halides, II/TV and III/V group
polar binary crystals AB;_,C),, where p is concentration. The B atoms are substituted with
the atoms C' from the same column of the Periodic Table. It was found that there were
several patterns that TO and LO modes follow in mixed crystals [50, 51, 52, 54, 55]. In
the type I mixed crystals, also called one-mode crystals, the frequencies of the TO and LO
modes evolve smoothly and almost linearly with the composition parameter p from their
values in AB to those in AC. In some one-mode systems (e.g., Ba/SrF»>, Ca/SrF; [56, 57])
an additional pair of weak modes inside the absorption band is observed.

Type II or two-mode mixed crystals exhibit qualitatively different behavior. Two dis-

31



32 Chapter 4. Concept of LPM and optical properties of mixed crystals

tinct restrahlen bands are usually observed in the crystals of this category. For arbitrary
concentration, the width of each of these bands, Q1o — Qr0, is approximately proportional
to the composition parameter p for the dopant related band, and to 1 — p for that of the
original material. Two-mode behavior is characteristic for the crystals formed by elements
from IIT and V groups of the Periodic Table (e.g. GaAs/P and the like).

Another mode behavior could not be fit experimentally either to one- or to two-mode
patterns (e.g. Ga/InP [58], PbSe/Te [59], K/RbI [60, 61], etc.). This group of mixed
crystals was called Type I-II or one-two-mode systems. In these systems, one mode behaves
as in Type I, while the other behaves as in Type II, which is why Type I-II is also called
mixed mode.

To explain different types of behavior in mixed polar crystals, a number of theoretical
models have been proposed. In the IR experiments, modes with wave numbers q¢ ~ 0 are
excited. The Random Element Isodispacement model (REI) [62, 63] takes advantage of this
fact, assuming that the sublattices vibrate in phase with ¢ = 0. With some modifications [52]
after including the local field, and assuming a dependence of the force constants upon the
composition, the modified REI model (MREI) was successfully used to fit two-mode crystals
but encountered some problems in the one-mode materials. The fine structure of some mixed
crystals was reproduced along the lines of REI by means of a considerable increase in the
number of fitting parameters (cluster model [63]). A different approach made use of the
Green’s function formalism in order to treat vibrations in the mixed crystals; averaging over
disorder was performed either in a simple virtual crystal approximation (VCA) or with the
use of the much more elaborate coherent potential approximation [64] (CPA). Interaction
with the electromagnetic field in these approaches was included after the averaging procedure
was performed. The mean field approximation treats the crystal as if it has atoms of the
same sort with some average properties. It reproduces well the one-mode behavior, but
could not possibly explain the two-mode systems. CPA combined with an electrostatic
treatment of the electric field was used to fit a broader range of experimental data (see, for
instance, Ref. [65]).

An important theoretical problem many researchers have focused upon is to find a sim-
ple criterion for different mode behavior, based upon dynamical properties of the crystals.
Lucovsky [54] originally considered the significance of whether the original absorption bands
overlap or not, which turned out to be a rather rough criterion. Harada and Narita [55]
proposed a criterion based on relations between MREI constants (see also review papers in
Refs. [50, 51]). It turned out that one-mode and two-mode crystals can be described using
quite simple models with only a few fitting parameter, such as VCA and MREI, respectively.
Lucovsky et al. in Ref. [54] made an attempt to establish a connection between the behavior
of a mixed crystal and the existence of the localized modes at small values of concentration
parameters p or 1 — p. It was suggested that the two-mode behavior is associated with
the existence of local impurity states at both ends of the concentration range, while the
one-mode regime occurs when such local states do not arise. These ideas, however, could
not be applied to the mixed-mode behavior since the local phonon states arise either in the
gap between acoustic and optic branches or above the optic branch of the phonon spectrum
[7, 8 9, 10]. Therefore, the mixed-mode crystals required much more elaborate models,
where agreement with experimental data can only be achieved by increasing the number of
fitting parameters. The same was true for weak features of spectra of the one-mode crystals.

One of the goals of this Chapter is to put forward a simple physical picture explaining
the mixed-mode behavior based upon the concept of LPM’s and IPB. A local polariton state
within the restrahlen region was first observed experimentally in Ref. [66] as a weak feature
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in reflectance and Raman spectra of GaAs doped with Sn,Te or S. These states were found
to be associated with the local change in susceptibility due to localization of an electron
around the dopant. An interaction between the localized electron and LO vibrations of
the crystal gives rise to local LO phonons, therefore these local states have a complicated
structure that involves interactions between electrons, phonons and electromagnetic field.
Theoretically these states, however, were only considered in the electrostatic approximation
[66], and therefore these early observations did not lead to the concept of LPM’s, which
requires that the retardation be taken into account.

A new wave of interest in the optical properties of impure crystals in the restrahlen
region occured recently and was due to a general interest in systems with depleted or altered
electromagnetic density of states (DOS). The primary examples of such systems are photonic
crystals [5], and microcavities [67]. The restrahlen region in polar crystals was considered
from this new perspective independently in Refs. [17, 18, 19], where the concept of LPM’s
was introduced. The local state considered in Ref. [18] arises due to an impurity atom
with optically active electronic transitions, which interacts with host atoms through the
electromagnetic field only. With the transition frequency inside the restrahlen band, this
atom forms a local atom-radiation bound state. To some extent these states are similar
to the ones observed by Dean et al. [66], though an interaction with phonons was left
out in Ref. [18]. A different type of LPM was considered in Refs. [17, 19], where it was
shown that regular isotopic impurities can give rise to local states with frequencies inside the
restrahlen region. The interaction with the retarded electromagnetic field is responsible for
the localized electromagnetic component of the states. The detailed analysis of the LPM in
a three dimensional sodium-chloride-like structure (BCC) crystal in the case of diagonal and
off-diagonal disorder was carried out in Ref. [38]. It was proven that, because of retardation
effects, a LPM splits off the bottom of the TO-LO gap for an arbitrarily small strength of
the defects even in three dimensional systems.

When considering local polaritons, the authors of Refs. [17, 19, 38] assumed that the
restrahlen is a spectral gap not only for electromagnetic excitations but for phonons as
well. This is indeed the case for some polar crystals. It occurs more frequently, however,
that the restrahlen region is devoid of transverse optic phonons, but is still filled with LO
modes. In this case the interaction between LPM’s and LO phonons would make the former
quasi-stationary. Whether the local polaritons survive this interaction depends upon their
life-time, and we shall address this question in this study. At the same time it is useful to
note that the states observed in Ref. [66] reside in the frequency region where the density of
LO modes is especially large. The fact that they remained observable allows for optimism
that LPM’s of Refs. [17, 19, 38] could also survive provided that DOS of LO is not too
large. If this is the case, then local polaritons due to isotopic impurities can be invoked
to explain the mixed-mode behavior of mixed crystals and weak features in the one-mode
systems without having to introduce tens of fitting parameters.

These ideas can be used to discuss the one-two-mode mixed crystal Gag.70Ing.30P. Pure
GaP has a complete polariton gap in all directions, and experiments of Ref. [68] clearly
demonstrated the polariton band associated with I'n atoms inside the restrahl of GaP even
at room temperature. Polariton branches inside restrahlen were also observed in pure CuCl
[68]. This material demonstrates a very peculiar behavior because Cu atoms can occupy
several non-equivalent positions, thereby producing defects even in a pure material [54, 69].
These defects were shown to be responsible for a new TO mode with a frequency in the main
restrahlen [54, 69]. These experiments were originally described using a phenomenological
two-oscillator model, but they perfectly fit to the idea of LPM’s.
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Local polaritons, however, can take us further than an explanation of the old reflectivity
experiments. When retardation is taken into account, LPM’s give rise to a new transmitting
channel for electromagnetic excitations, via IPB. Experimentally, such a band can be ob-
served in transmission steady-wave and time-resolved experiments. The majority of the old
experiments mentioned above dealt with reflection spectra. Dips in the reflection coefficient
in those experiments were associated with impurity-induced absorption, while they could
have actually occured because of enhanced transmission via IPB. The effect of the enhanced
transmission inside the restrahlen region of a polar crystal was observed in CuC1 [70].

4.2 Model

In previous Chapter we considered development of IPB in a one-dimensional model, and
used the so-called microcanonical method [20] in order to analytically calculate the complex
Lyapunov exponent of the system. Used approximation was shown to be equivalent to a
continuous medium approximation. The latter can easily be generalized to 3D systems,
and below we develop an approach to IPB in 3D mixed polar crystal using the following
fundamental assumptions.

In order to model optic vibrations of the system under study, we introduce two subsys-
tems of oscillators with different frequencies. One subsystem represents an optic mode of the
host atoms. The interaction between this mode and light leads to the polariton gap between
TO and LO frequencies of the pure crystal. The second subsystem introduces vibrations of
impurities, and it is assumed that its frequency belongs to the restrahlen of the host crystal.
This is a crucial assumption of the model, since interaction between light and this mode
brings about LPM’s. The significance of this assumption rests upon two ideas. The first
one goes back to Lucovsky [54], who was the first to connect modes of mixed crystals with
local impurity modes. The second one is the concept of LPM’s, which are local states with
frequencies in the restrahlen of the host. As it was shown in Chapters 2,3, the presence of
LPM’s gives rise to IPB, when the concentration of impurities grows.

The frequencies of both oscillators are, in general, complex-valued. The imaginary part
of host vibrations is due to anharmonicity, while the impurity mode has two sources of decay.
Besides usual relaxation, local polaritons can acquire an additional imaginary part due to
interaction with LO phonons which in some cases can fill the restrahlen. We will consider
the contribution of this interaction into the life-time of LPM’s in the next section, and the
general effects of relaxation upon reflection spectra of mixed crystals will be discussed in
Section 4.5.

It was found in Refs. [17, 19, 38] and Chapter 3 that for all frequencies outside of the
immediate vicinity of the TO boundary of the restrahlen, the localization length ly of LPM’s
is of the order of magnitude of the wavelength of the incident light ~ 102 ¢m. Even for
residual concentration n ~ 1012 em=2 of the impurities, nl3 is large. The individual states
significantly overlap and a macroscopic volume containing many impurities can still be much
smaller than the localization length. This fact allows us to develop a continuous medium
approximation similar to the usual one used to treat long-wave excitations [71], but this
time we use it to treat the sub-system of impurities. We would like to emphasize again that
this consideration is reasonable for the polariton band only because of the long-range nature
of the localized electromagnetic component of the local polaritons.
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The microscopical Hamiltonian describing optic modes of our system is:
m goy o () g (e g
' S~ 2\ dt — 2 \ dt 2 &

where pg, p1 and u,, v, are the reduced masses and relative displacements of the ions in
pure AB and AC crystals, respectively. We will assume that the presence of atoms C does
not affect the order in the A sublattice. The summation runs over spatial index r for host
atoms and over r’ for the impurities. The third term in the above expression is the potential
energy. In the harmonic approximation it can be written as

B (up,vw) = @) (r—ri)uivd, + ) (@' —r}) vivl,
(01) 1\ i
(4.2) + @ (r—r)upvp.

In order to avoid unnecessary complications, we assume no spatial dispersion in our model
Hamiltonian (4.1) and isotropy of force constants

(4.3) ® (uy,vp) = dou’ + v,

where ®g and ®; are force constants describing the interaction of the ions in the AB and
AC lattices, respectively. As follows from the form of expression (4.3), the contributions
due to host and impurity ions in the Hamiltonian (4.1) can be separated

1 [(du\> 1_

Ho= 2| (ﬂ) +5‘1’°“r]

> 1 [fdve\> 1. ,

(44) + - [5/},1( dt ) +§(P1Vr/

We have several parameters of the dimension of length in our system: a lattice constant, a;
an average distance between defects, | ~ n~1/3, which depends on concentration; and the
localization length and the wavelength of the incident light, which are of the same order,
lo ~ A ~ 107 m. We shall assume that the concentration is such that n > I5®. When
this condition is satisfied, the individual defect states overlap, and the dynamical proper-
ties, apart from those at the fluctuation band-edge, do not depend significantly upon the
particular arrangement of the defects in the crystal. Hence, one can introduce a smooth-
ing parameter lsy such that | < lsy < lp. The macroscopic volume associated with this
parameter is such that it contains macroscopically many impurities, but there are still no
significant changes in spatial distribution of vibrations over this length: u,+Rr, Vr4rR & Uy, Vr
for R ~ l5y. Taking advantage of this fact one can sum over the volume 6V (R) ~ I3, in
the vicinity of R in the Hamiltonian (4.4):

1 (da\? 1
> 5#0(“) +—¢0ur2] =

resV(R) dt 2

(4.5) - l%uo (Cl:ll—tR) + %‘I’OURQ] - no [1-p(R)]OV(R),
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1 (dus\’ 1 )
Z [5”0( p ) +§q)0ur’ ] —

r'€5V(R)

(4.6) — [%Mo (d:ll—tR> + %QOUR2] - nop(R)IV(R),

where we assume that the change in lattice constants of two end crystals is negligible,
a ~ n(l]/ ® and p(R) = n(R)/no. Thus the Hamiltonian (4.4) can be rewritten in the
continuous medium approximation as

1 ="2 [0~ o) i i, + 1~ p(R) vy

(4.7) +p(R)1 Vi +p(R)®1vE ] av.

The ion polarization at R is

1
P.,n(R) = Z quy + Z qVr
SV (R)
r&sV(R) ' €5V(R)
(4.8) -+ (1 -p(R))gnour + p(R)gnovr ,

where we assume for simplicity the same effective charges for both oscillators, and again
use the fact that l5y < lp and consequently u,, v, do not change significantly over such
distances. The interaction of the polarization with the electromagnetic field gives rise to an
additional term in the Hamiltonian:

(4.9) Uint = /P -EdV =ng / [(1—-p(R))ur + p(R)vr] - EdV.

Combining Eqs. (4.7) and (4.9) and writing out the resulting Hamilton equations for
uRr, VR, one obtains

po ur= Pour + ¢E,

These equations of motion should be accompanied by the Maxwell equation for the electro-
magnetic field in the medium
1 & (E + 47P;op, + 47P )

(4.11) VxVxE= =2 72 )

where the last term describes an electron contribution to the polarization that determines
the high-frequency value of the dielectric parameter. Another effect to be taken into account
is that the local electric field on atoms that induces polarization is different from the macro-
scopic field entering the Maxwell equations. The effective local field in a high symmetry
crystal can be written in the form [71, 65]:

47
(4.12) Eioe = E+ 5 (Pion +Pa),

(413) Pel = noaooEloc.
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Substituting the effective local field into Eq. (4.10) and total polarization of the volume
P =P;,, + P, into Eq. (4.11), one obtains the closed system of equations of mechanical
coordinates, the polarization and the electric field. Eqgs. (4.10), (4.11), (4.12), and (4.13)
formally resemble equations of MREI used in many papers. There are, however, important
differences. First, the concentration parameter p(r) entering our equations is still a random
function of coordinates. The statistics of this parameter, however, are significantly differ-
ent from the original statistics of the microscopic distribution of impurities. The spatial
inhomogeneity of the continuous function p(r) reflects the fluctuations in the number of im-
purities in the macroscopic volume §V, which are significantly reduced as compared to the
fluctuations in the original microscopic distribution of impure atoms. More detailed con-
sideration of the statistical properties of p(r) will be presented in the last Section. Second,
the derivation of Egs. (4.10), (4.11), (4.12), and (4.13) is explicitly based upon existence of
a macroscopic length scale — the localization length of LPM’s. A similar procedure cannot
be applied to the regular phonon states, because the localization length of the local phonon
states is usually microscopic. Finally, the requirements that the impurity-induced oscillator
has its frequency within restrahlen replaces conditions for local phonon modes that appear
in regular MREI [52]. In this section we will assume that the fluctuation of the number of
defects in the chosen volume is negligible and, therefore, p(R) = p. Excluding the polariza-
tion and lattice displacements from the system yields the following equation for the Fourier
components of the electric field

2

(4.14) k xk x E, = “e(w)E,.
C

In this equation, €(w) denotes the effective dielectric function of the mixed polar crystal
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where QF ; = ($0,1/ po,1)*/? are the lattice eigenfrequencies and parameters

(4.15) e(w) = €xo
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determine the width of the polariton gaps of the end crystals. We assume that the high
frequency dielectric constant does not depend upon the concentration. e, can be expressed
in terms of polarizability as as

AT oo

€oo =14+ —Fp——.
1—47”0400710

From Eq. (4.14) one can separate the transverse and longitudinal modes as

(4.16) FPEL = C—QE(UJ)EJ‘,

(4.17) cWEl = 0.

A similar expression for the dielectric function was obtained previously in Ref. [55] within
the MREI. Nobody, however, assumed before that the ; lies within the restrahlen of the
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host. It is only the concept of LPM’s that justifies using this dielectric function in the case
when the frequency of the defect oscillator falls into the polariton band gap. Comparing Eq.
(4.15) with the respective expression obtained in the previous Chapter, one can see that Eq.
(4.15) is a zero-order approximation in a series expansion in terms of the small parameter
1/lp < 1. In the last Section of this Chapter we shall demonstrate this fact implicitly.

4.3 Long-living quasistationary LPM’s in restrahlen band

The model developed in the previous section is implicitly based upon the assumption about
the existence of local states with frequencies within the Restrahlen. In this section we shall
provide additional justifications for this assumption.

In the original papers [17, 19] where local polaritons were introduced, it was assumed
that within the restrahlen there is a genuine spectral gap with the phonon DOS being equal
to zero over some frequency region. Such situations are, indeed, possible in some crystals
(GaP, ZnS, CuBr, etc [72]). It is more common, however, that the restrahlen is filled with
LO phonons, which are linearly coupled to LPM’s. This coupling results in the “phonon
radiative decay” of the local polaritons (compare to radiative decay of local phonons due
to coupling to light). It is important to emphasize, however, that the electromagnetic
component of the LPM’s remains localized even when there is leakage through the phonon
component. The phonon radiative decay broadening of local polaritons (and the respective
life-time) is determined by the density of LO phonon states within the restrahlen. In some
cases this DOS is large enough to suppress LPM’s. At the same time, there exists a broad
range of materials (for instance, NaF ,NaBr, RbF, etc. [72]) that have a relatively low DOS
inside the restrahlen, so one could expect that local polaritons can survive the presence of
LO phonons and affect significantly the transport properties of the system. In fact, the
local states inside the restrahlen observed in Ref. [66] resided in the frequency region with
a rather large DOS, and still could be observed both in reflection and Raman spectra.

Since the fundamental assumptions incorporated into the model presented in this Chap-
ter are based upon existence of long-living LPM’s, it is of great importance to study their
life-time in realistic polar crystals. Our consideration of the question about the “phonon
radiative decay” time of the local polaritons is based upon results of Ref. [38]. It was shown
that the frequency of LPM is determined by

_om —l— 2
1 = 2 / Pz pj %) 1
—z
6 +2
(4.18) - -2l wdz |
m w?—z
where m = TI:J/F,Z]:, m4 and m_ are the masses of positive and negative ion sublattices

respectively, dm is the difference between masses of the defect and the host atom replaced by
the defect, and pj(w) and p, (w) are densities of states of TO and LO phonons, respectively.
If the LO DOS differs from zero in the restrahlen region where we expect the local state to
reside, the respective integral in Eq.(4.18) acquires an imaginary part equal to imwp)(w). For
a light impurity (ém < 0) this equation would have a real solution w; if p(w) = 0.Podolsky
The presence of LO modes makes the solution complex valued, w; = w; — iy. The phonon
component becomes delocalized, although the electromagnetic component remains localized.

If, as we assume, v/w; < 1, then w; can be considered to be the solution of Eq. (4.18)
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with the imaginary part dropped and v can be found as the first order correction to it

(4.19) o (@)

wi 2w2R(w1) +w§%“il)’

where R(wi) is a principal value of the integral entering Eq.(4.18). The derivative of
R(w1) can be estimated using the explicit form of this function as wl%"jl) = 2R(w1) +
O ((wia/c)?). Finally one obtains

y o —im m_
4.2 — = — ) — .
(4.20) w1 4 <m_ + m+> my wip)| (1)

It follows from Eq. (4.20) that there are three factors affecting the life-time of the polariton
states. First of all, it is the density of LO phonon states wip)(w1) in the restrahlen. As
mentioned above, due to the strong dispersion of the LO branch, the density of states in many
alkali halides [72] between Q(70)(0) and €(10)(0) can be less then 10% of the maximum
DOS at TO frequency. Unfortunately, the experimental data on the phonon DOS known
to us do not provide its value in absolute units, and in order to obtain an estimate for
this quantity in the region of interest, we have to rely upon some assumptions. To this
end we use the Debye model for DOS of the acoustic phonons in order to establish a scale
for the experimental results listed in Ref. [72]. This choice seems reasonable because the
Debye model gives a fairly good description of low-temperature thermodynamic properties
of crystals, and parameters of the model for most of the crystal of interest are established
with good accuracy. Having the scale for the phonon DOS, one can assess the numerical
value of the dimensionless quantity w;p)(w1). Our estimates show that this parameter in
the spectral region of interest can take values between 0.2 and 0.6 in different systems.

The next factor affecting the life-time of LPM’s is the defect parameter dm. This param-
eter cannot be assumed to be too small since we would like to have our local state farther
away from the TO boundary of the restrahlen, and as it was shown in Refs. [17, 38], the
frequency of LPM state moves deeper into the restrahlen with increase of the defect strength
om. At the same time, it is clear that the factor —dm/(m_ +m_ ) is at least less then unity.
The third factor m_ /m+ (or my /m— when the negative atom is replaced), can be as small
as 0.2 for RbF or even 0.06 in the case of Lil. Combining all terms we find that in a number
of crystals (NaBr, NaCl, RbF, etc,) the dissipation of the local polariton state is rather
small v/wy < 0.1. In fact, it appears to be of the same order of magnitude as anharmonic
absorption, and later in the Chapter we will introduce both these relaxation channels phe-
nomenologically using just one parameter of relaxation. The presented estimates show that
LPM’s can actually survive even in materials with restrahlen filled with LO phonons, and
provide, therefore, a foundation for the model presented in the previous section. Now we
can start discussing the results following from this model.

4.4 IPB in mixed polar crystals

4.4.1 Dispersion laws of impurity polaritons

In this section we discuss properties of polariton excitations in our system neglecting relax-
ations. Effects of the dissipation will be incorporated in our treatment of reflection spectra in
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the next section. The dispersion of the transverse polaritons is determined by the equation

(4.21) k= \/e(w)%,

while the longitudinal excitations obey the equation €(w) = 0 and are dispersionless within
the present model. The sign of e(w) determines the structure of the spectrum. The bands
of propagating electromagnetic waves coupled to the lattice vibration appear at frequencies
where €(w) is positive, and bandgaps arise where the dielectric function (4.15) is negative.
The change of the sign of €(w) occurs when e(w) = 0 and when 1/¢(w) = 0. In the electro-
static approximation, the first of these conditions determines the LO frequencies wyo, while
the second gives the frequencies of TO phonon modes, wro. With retardation taken into
account for regular polaritons in pure crystals, the latter becomes the short wave limit of the
lower transverse polariton branch, while wro determines the £ = 0 frequency of the upper
polariton transversal branch degenerate with the longitudinal phonon mode. As we shall
see in this section for the impurity induced polaritons, the interpretation of the boundary
frequencies is quite different.

In the absence of defects, p = 0, the restrahlen polariton band stretches between trans-
verse , .

Q(()TO)2 = Q(Q) - %dgv

and longitudinal,

2
0o? =05+ 2,

frequencies. Introducing defects with Q(()TO)2 <0< Q(()LO)2 in the system with concentra-
tions significant enough to satisfy the condition {/ly < 1 yet still small in the sense that
p < 1, one can rewrite Eq. (4.15) in the linear in p approximation:

Qo2 _ w? wz? —w?
(4.22) €(w) ~ € ( g i

TO)2 — 2
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It can be directly seen from this expression that the impurities give rise to the band of
propagating excitations inside the restrahl of the original crystal, with boundaries given by

Wi =0%2_p 3d3(07 — w?) — 3d3(QF —w?)
il 1 Q(()LO)2 B Q% ’
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The width of the band (in terms of squared frequencies) is linearly proportional to the
concentration

dess 72 €xot2 2 2
do — == — %)
(Q(()LO)2 _ Qf) (Q% _ Q((]To)z)

p >0,

provided that the impurity frequency €2 is not too close to Q(()LO) such that

. 2
(4.25) Q92 _ 2 « 3dodi/p.
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The lower band boundary, given by Eq. (4.23), corresponds to a dispersionless longitudinal
polariton branch

(4.26) w9 (k) = wa,

while the upper one is the short wave limit of the branch of transversal excitations. An
approximate dispersion law for these excitations can be obtained from Eq. (4.21) if one
substitutes w = Q3 everywhere except in terms containing IPB boundaries:

k212

(TO) 1) —

2
Parameter [y in this equation is the localization length of a single LPM with the frequency
equal to Q;:

LO)2 1/2
(4.28) It = Q_?emu i
2 02— Q(()TO)2

Excitations described by Eqs. (4.26) and (4.27) demonstrate a number of peculiarities.
First, one can note that the mutual positions of longitudinal and transverse modes are
reversed compared to the regular polaritons: the longitudinal mode has lower frequency than
the transverse one. However, if one takes the original polariton branches of the host crystal
into consideration, the normal sequence of transverse and longitudinal modes is restored:
the host transverse polariton branch is followed by the impurity longitudinal mode, which is
followed by the impurity transverse mode. The last modes in the sequence are the LO mode
and upper transverse polariton branch of the host. Second, the single transverse impurity
polariton mode combines properties of lower and upper regular polariton modes. Indeed,
at k = 0 this mode becomes degenerate with the impurity longitudinal mode akin to the
upper branch of regular polaritons. At the same time the short wave limit & — 0 of the
same mode corresponds to the TO frequency of the electrostatic approximation, and sets
the upper boundary of the propagating band similar to the regular lower polariton branch.

The dispersion curves of the transverse excitations, obtained from general equation (4.21)
for several concentrations, are shown in Fig. 4.1. The similar dispersions were observed
experimentally by means of Raman spectroscopy in mixed crystal Ga/InP in Ref. [68].
Originally, the interpretation of these observations was based upon a phenomenological
dielectric function with multiple resonances, while it seems clear now that they provide a
solid support for the concept of impurity polaritons.

From the dispersion law described by Eq. (4.27) one can obtain an expression for the
group velocity of the respective excitations:

0 @) _ o (&* —wf)"” (wf, —w?)*”
c A Ww2A2 ’

imp

(4.29)

which reaches its maximum value of

v (wmaa:) lO 33/2 5im 5im
(4.30) c A8 w w '’
at
Wloe = Wi+ 1/4A2

mazx imp-

We introduced here a new parameter, d;mp, characterizing the width of IPB in terms of
frequencies themselves: ipmp ~ A%mp /2w. The group velocity is linear in concentration and is
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Figure 4.1: Dispersion curves of the transverse (solid) and longitudinal
(dashed) optic defect modes in the restrahl for four different concentrations.
The insert depicts the dispersion curves of the pure crystal. Frequency and

wavenumber are given in the same units, cm™".
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significantly smaller than the speed of light in vacuum. This is an interesting result showing
that propagation of light through mixed crystals can be significantly (and controllably)
slowed down. The smallness of the group velocity is also reflected in the flatness of the
dispersion curves presented in Fig. 4.1, as well as in experimental results of Ref. [68]

The density of polariton states in the impurity band (IPDOS) can also be obtained from
the dispersion equation, Eq. (4.27),

1/2
1 »  (w?—wi)
(4.31) D(w) ~ PRSI WAL, o w2)5/2'
U

At the low-frequency boundary of the band this DOS reproduces the singular behavior
characteristics for the lower polariton band of pure polar crystals, while at the high frequency
edge it resembles the behavior of the regular upper polariton band. At the center of the
impurity band IPDOS can be expressed in compact form in terms of the localization length
lp and the linear width of the band §;pm,:

1

The dependence of IPDOS upon concentration is different at the edges of the band and at
the center. The boundary of IPDOS depends linearly upon p, and tends to zero when p
decreases. At the band center IPDOS is inverse proportional to p, and goes to infinity when
p — 0. Such a behavior has a simple meaning — it describes the collapse of the band into a
single local state with an infinite density.

The linear in concentration approximation for IPB fails when the defect frequency Q4
falls close to the band edge, Q(()LO), of the pure crystal, so that Eq. (4.25) does not hold
anymore. In this case, one can obtain approximate expressions for characteristics of the
impurity band using an expansion of Eq. (4.15) in powers of Q(()LO) — 4. The zeroth order
in this parameter leads to a square root dependence of the band width upon concentration:

2dod
(4.33) A2 g L /p.

It is interesting to note that this situation was probably observed in one-two-mode mixed
crystal Ga/InAs [73]. In that system at small concentration of In the frequencies w; (p)
and Q9 (p) could not be fit with linear in p expressions, while w;,(p) remained linear.

This is exactly what our model predicts in the case when 2 approaches QSLO):

2dod
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DOS in this case is given by the expression
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which has the regular polariton behavior at the boundaries similar to one described by Eq.
(4.31), but with a different pre-factor. This pre-factor significantly modifies IPDOS at the
center of the band,

3/2 1/2
(4.36) Doy =31 (9 P o
| CET v \B=g) \af)

1/4

which is now proportional to p'/*. At very small concentrations, however, this dependence
will change over to the one described by Eq. (4.32) as the condition given by Eq. (4.25)
becomes valid again.

The dispersion relation for the impurity TO branch becomes in this limit more compli-
cated:

1 2+ €
W2k = Wi+ 5 [2A?mp+’f2>\2( ;6 dg)

2 €00

2+ €0 2
(4.37) — \/k4)\4 (3—d§) + 4A;.1mp ,

€0

while it still has the same limits wz(TO)(k) — w;y ~ k2 for small k and wETO) (k) = wiy
for large k. The crossover parameter, however, is no longer the localization length Iy, but
rather a vacuum wavelength of light at frequency QFC: X\ = QL9 /c. The effective mass of
the branch at the longwave boundary is much larger than in Eq. (4.27) and does not depend
upon concentration. The LO frequency of the impurity polariton branch does not show any
dispersion:

(4.38) w9 (k) = wa,

similar to the situation considered before, for k> > AZ? /(\?dj) two branches of IPB run
almost parallel showing a very small dispersion.

The group velocity at the boundaries approaches zero at the same rate as before, but at
the center of the band, the dependence upon the concentration is different:

1/2 1/2
4.3 Uy (We) 312 (246 di / Simp /
(4.39) c 5 3eoo Q(()LO) 2 Q((]LO) .

It is much larger than the respective quantity, when the linear in p expansion is valid, and
increases much faster ~ p'/* with the concentration.

4.4.2 Evolution of IPB boundaries with composition parameter

Further increase of concentration leads to more complicated dependencies of the bandwidth,
DOS, etc. on concentration and other parameters. In this subsection we shall focus upon
concentration dependencies of band boundaries, which are experimentally identified with TO
and LO phonon frequencies of the electrostatic approximation. These dependencies were
extensively studied experimentally, as we have already discussed in the Introduction, and
the objective of this subsection is to show how the concept of impurity induced polaritons
provides a simple and physically transparent explanation for the weak mode in one-mode
crystals, and for one-two-mode behavior. Analysis of poles and zeroes of the dielectric
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function (4.15) shows that the evolution of the modes with concentration is determined in
our model by a relative position of the characteristic frequencies Qg, Q1, QF°, QF°, QO
and QFO. The first pair of these frequencies are the initial phonon frequency of the host
crystal, and LPM of the impurity, respectively. The electrostatic interaction, and the local
field changes g to actual TO and LO host frequencies Q7 © and QFC. The last pair of
the frequencies, Q7° and QFC, corresponds to TO and LO modes of the crystal made
up of impurity atoms only. The local field, which induces the difference between initial
frequencies, 2,1, and actual TO, LO frequencies, is very important. In pure crystals (made
of initial host atoms or initial impurities) the relation between Qo and Qf¢ and Qf?,

(4.40) 2+ 600)9(2]’1 _ 29(()?;0) 2 6009((),Llo) 2

was originally derived in Ref. [71], and its importance was stressed in Ref. [65]. The
same relation exists in our model as well. At small concentrations, p < 1, the initial
impurity related frequency €21 is not renormalized by local-field corrections because this
renormalization is caused by the interaction with like atoms. At small concentrations an
impurity atom is mostly surrounded by atoms of the host crystal, and the renormalization
does not occur. Similarly, for 1 — p <« 1, the local field turns Q; into QF¢ and QF©,
while leaving o unchanged as a characteristic frequency of former host atoms. Eqgs. (4.23)
demonstrate that at small p IPB inside the restrahlen of the host arises when € falls inside
the host restrahlen, see Fig. 4.2a,c,d. For 1 —p < 1, host and impurity atoms exchange their
roles. In this case, should €} falls in between QgTo) and ng’, it gives rise to IPB induced
€yt ? : (TO) (LO) (TO) (LO)
now by the “host” atoms. Hence, if both 5 7/ < Oy < Qy"77 and O < o <
conditions are satisfied at the same time, then IPB exists in both p — 0 and p — 1 limits.
This situation is shown in Fig. 4.2a. This is one-mode behavior with a “weak” mode. One
observes strong TO and LO modes of the original crystal smoothly evolving into those of the
end crystal, while inside the restrahlen a weak additional TO and LO impurity polariton
modes arise with vanishing TO-LO splitting at both ends of the impurity range. This
peculiar behavior occurs due to the interplay between the external electric field and the
polarization, affecting the local field (4.12). Experimentally, this type might be realized in
the materials where the polariton gap is sufficiently wide, which may be the case for many
alkali halides. However, because of the weakness of these modes they are vulnerable to any
kind of dissipation, as we shall see in the next section. This fact can explain the absence of
the defect mode in “classical” (no weak mode inside the restrahlen) one-mode mixed crystals.
At the same time, we can relate the features presented in Fig. 4.2 to the weak mode observed
in the Ba/SrF,,Ca/SrF; and some other one-mode crystals (see Discussion). Previously,
in order to reproduce the weak feature observed in spectra of these crystals, one had to
use models with tens of fitting parameters (see Refs. [50, 51] and references therein). The
concept, of IPB, presented here, gives a transparent and quite general explanation of this
type of spectra.
If IPB exists only in one limit, for example, Q'? < Q; < Q%Y for small p, but Q
y ) ple, iy 1 0 D, 0
lies outside the interval (QgTO),QgLO)) when p ~ 1, our model predicts the one-two-mode
behavior (Fig. 4.2c¢,d). Two types of one-two-mode mixed crystals appear depending upon
whether (2 falls below the interval (QgTO),QgLO)) (Fig. 4.2c), or above it (Fig. 4.2d). In
the first case, the lower mode weakens with the concentration, while in the second case, the
upper one does. At p ~ 0 the situation remains qualitatively the same as in the one-mode
case. At p — 1, the splitting between new modes does not vanish, and they form the new
restrahlen of the pure crystal at p = 1. Strictly speaking, in this limit we cannot justify our
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Figure 4.2: Four different types of the evolution of the transverse (solid
lines) and longitudinal (dashed lines) optic mode frequencies of the mixed
polar crystals with composition parameter. The leftmost and rightmost
composition parameters correspond to pure end crystals.
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model, since there are no local modes at this end of the concentration range. Quantitatively
however, we can still explain the one-two-mode behavior as a result of the presence of LPM’s
at small p, and the absence of them at p close to one. If in neither limit IPB appears inside
the gap (1 ¢ (Q((]TO),Q((,LO)) and Qo ¢ (QgTo),QgLO))), our approach is not applicable at
any concentration. Although the absence of the impurity bands at end concentrations, in
our opinion, suggests two-mode behavior (Fig. 4.2d).

4.5 Transmittance and reflectance of EM waves from
mixed polar crystals

Having obtained the effective dielectric function of the mixed polar crystal, one can study
their reflection and transmission spectra for a number of different geometries. Among them,
the normal reflection spectrum from a semi-infinite sample and normal transmission and
reflection from a slab of finite dimensions are of particular interest since they are a primary
source of information about optical properties of crystals studied in numerous experiments
[50, 51].

4.5.1 Reflection spectrum of semi-infinite mixed polar crystals

In this section we phenomenologically incorporate damping in the dielectric function (4.15)
substituting w + 47y for w in the resonance terms of Eq. (4.15). As we already discussed
it is sufficient for our qualitative purposes to assume that the damping parameter is the
same for both host and impurity related modes. We can note, however, that as numerical
calculations demonstrated, properties of each mode are determined primarily by its own
relaxation parameters, and effects due to damping in the other subsystem are usually neg-
ligible. This means that, in principle, it is possible to experimentally determine relaxation
parameters for each of the participating oscillators independently. For our calculations we
chose the value of v such that v/Q¢ ~ 0.1, which is a rather conservative estimate. For
typical polar crystals the relaxation parameter ranges from /g less than 0.01 to 0.1, and
since the relaxation in the impurity subsystem due to coupling to LO phonons inside the
restrahlen was estimated in Section 4.3 as less than 0.1, our choice for this parameter seems
quite reasonable.
After accounting for the dumping, the effective dielectric function (4.15) becomes

d2 2
1 = 1— 0 1
T3 [( P) 03 — w? + 2iyw +pQ% - w2+ 2i7w]
d? d3 '
=

€0 0
1- &= =
3 [( P) 02 — w? + 2iyw +pQ% — w? 4 2iyw

(4.41) €(w) = €

For normal incidence, the reflection coefficient from the semi infinite crystal is equal to

1-e2(w)|”

In the absence of damping, the original dielectric function (4.15) has a peculiar property,
which is specific only for the model with IPB within the restrahlen of the host. Inside this
band, the dielectric function goes from zero to infinity, and hence, necessarily passes through
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unity. At a frequency where this happens, the reflection coefficient must become zero, since
for this frequency the medium becomes transparent. At small concentrations, this frequency,
wr=1, is determined by the equation:

A2w2 + 13w?
2 N Sad 1) 0
(443) Wr—1 = W,

and since lo is less or of the order of A\; = 3 /c it lies slightly off the center of the band,
closer to w;;. When relaxation is accounted for, the zero of reflection is not reached, but the
reflection still can have a minimum at a certain frequency. The magnitude of reflection at
this frequency is determined by relaxation, and can be used for independent measurements
of the latter.

We used typical values of the parameters in Eq. (4.41) to plot normal reflection spectra
for semi-infinite mixed crystals. The optic frequencies Q(()?;O’LO) of such systems are about
a few hundred cm ™!, the widths of their polariton gaps range from ~ 10% for III/V group
polar crystals, up to ~ 30% for alkali halides. The high limit dielectric constant lies within
the range of ~ 3 — 5. Fig. 4.3 presents three graphs corresponding to three different types
of spectra, which can be described within the model of impurity polaritons. Each graph
shows curves obtained for p = 0%, 25%, 50%, 75%, 100%. Fig. 4.3a depicts the reflection
spectrum of the one-mode crystal. As it can be seen from the plot, for all concentrations
there is one dominating absorption band. Nevertheless, for intermediate concentrations one
can notice a weak mode inside this band. This mode is quite weak in accord with the
discussion of the previous section, and can be smoothed away by the absorption. Whether
this mode will be observed in a concrete material depends upon the interplay of several pa-
rameters. At the same time, since we have used realistic values of parameters characteristic
for one-mode group of mixed crystals, our calculations show that the impurity polaritons
can indeed be used to explain this feature of one-mode type spectra. Reflection spectra
corresponding to one-two-mode behavior are shown in Figs. 4.3b,c. There are two types of
such spectra, which are very much alike. At small p, the spectra look akin to the one-mode
type, but with an increase of the concentration two modes appear, with one-mode growing
stronger and the second one diminishing. Spectra Figs. 4.3b,c correspond to phase diagrams
shown in Figs. 4.2¢,d respectively. It is seen that the presence of damping does not prevent
one-two-mode behavior predicted by our model to be observed in reflectance experiments.

4.5.2 Slab of finite dimensions

In this subsection we consider normal reflection and transmission spectra of a mixed crystal
slab. The width of the slab is assumed to be much greater than the average distance between
the impurities, so that our averaging procedure can be applied. At the same time we do not
consider samples thicker than several wavelength, so that the damping does not suppress
transmission completely.
The transmission coefficient through a slab of width L for normal incidence is given by

2
1/2 2 1/2
B (e}/2 — 1)% cos (2€/2L)

2€'/2 cos (2€!/2L) —i(e + 1) sin (2€'/2L)

(4.44) Tw) =1

In the absence of damping, the transmission coefficient turns to unity when either € = 1 or
we'/?L/c = w(m +1/2), where m is an integer. The first case corresponds to the frequency
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Figure 4.3: Normal reflection spectra from semi infinite mixed crystals.
Three graphs correspond to one-mode (graph (a) in Fig. 4.2) and two types
of one-two-mode (graphs (c) and (d) in Fig. 4.2) behaviors. The parameters

used to generate these graphs (including absorption) are typical parameters
for polar crystals.
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Figure 4.4: Transmittance spectrum through a slab of one wavelength width
with typical parameters, plotted as a function of frequency. The lower
graph shows the full frequency range, while the upper one is restricted to
the polariton defect band at p = 10%.
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Figure 4.5: Transmission (solid) and reflection (dashed) coefficients of a
thin mixed crystal at p = 20% in the presence of absorption.

determined by Eq. (4.43), when the medium becomes optically transparent, while the second
condition corresponds to the usual geometrical resonances.

The width of geometrical resonances decreases as 1/e(w) with w — w;,, because of the
divergence of the dielectric function at this frequency. Fig. 4.4 depicts the transmission
spectrum of the 10% impure slab of the width L = X in the absence of absorption, where
the lower plot shows the broader frequency interval covering the entire restrahlen of the host
crystal. One can see IPB inside the forbidden gap at the frequency ~ 180 em™!. The wide
flat-top resonance at 181.7 em ™! corresponds to the frequency (4.43), where the dielectric
function becomes one, and all the other peaks represent geometrical resonances.

Different natures of the resonances affect their response to damping. The narrow comb of
geometrical resonances washes out first even when damping is relatively small. This occurs
due to the fact that the geometrical resonances are in essence standing waves that experience
multiple reflections and therefore are strongly damped. The € = 1 resonance, to the contrary,
is much less affected by the relaxation because polaritons pass through the sample only once.
Fig. 4.5 depicts the transmission (solid line) and reflection (dashed line) coefficients for a
narrow slab with 20% impurities and the same set of parameters, which was used to generate
Fig. 4.3c. It is clearly seen, that even despite of high absorption rate v/ = 0.1, the peak in
the transmission coefficient survives, and can be associated with the minimum in reflection.
It allows us to suggest that reflection anti-resonance observed in many systems can be
associated not only with the impurity induced absorption, but also with the impurity induced
transmission. A similar transmission maximum was observed experimentally in CuCl! [70],
where the role of defects was played by some Cu atoms occupying off-center positions.
The maximum in the transmission is direct evidence of IPB. It would be of great interest to
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carry out transmission measurements for different groups of mixed crystals in order to verify
predictions of the current Chapter. We believe that time-resolved measurements could also
provide important information, particularly regarding group velocities of these excitations.

4.6 Scattering in IPB

In previous sections we considered optical properties of mixed polar crystals neglecting
fluctuations of concentration function p(r). Results obtained for 1D model considered in
our previous Chapter suggests that this approximation is a zero-order term in the series
expansion in terms of the parameter [/l < 1, where [ is an average distance between defects
and [y is the localization length of the single LPM. In this section we take into account
fluctuations of concentration in the first non-vanishing order in terms of the parameter
op = p(r) — p, and show that the actual small parameter of this approximation is indeed
1/lo < 1. The main result of this section is to demonstrate that the scattering of impurity
polaritons induced by concentration fluctuations is decreasing with an increase of the average
concentration, and is actually negligible on the background of absorption. This fact provides
a justification for the results obtained in the previous sections of this Chapter, where these
fluctuations are neglected.

We shall employ the Green’s function formalism in order to calculate the scattering
length of the impurity-induced polaritons due to concentration fluctuations. The Green’s
function of the inhomogeneous dielectric medium can be presented as

2
_ w

(445) |G (rr) = L [elw,plr) — €, )] dar | Grar, 1) = Gasd(x — 1),

where G&O,z is the Green’s function of the system with homogeneous dielectric function e(w, p)

given by Eq. (4.15). This zeroth order Green’s function can be written down in k-space in

terms of the projection operators éég = 8ap — kaks/k> and élﬁ = koks/k” as

Al

Al
e e
(4.46) GOk = 28 _ 98
Pk K

where k2 (w) = w?e(w)/c?. Since we search for the leading corrections to the Greens’ function
of the system, we expand e(w, p(r)) in terms of dp(r) and keep only the linear term

w? de(w, p + dp(r))

2 op(r) ()0 dp(r) = £*(w,p)dp(r).

€(w,p(r)) — e(w,p) =

Statistical properties of the random function dp(r) can be described in this approximation
by its momenta up to the second order:

(Op(r)) = 0,
(4.47) (Op(r)op(r)) = K(jr—1')).

The second order correlator depends only upon the distance between two points in space,
since the system is assumed to be homogeneous and isotropic on average. After standard
transformations to k-representation one obtains

(4.48) Goak) = (kK —k})egs — kiel, —
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where S(k) is the Fourier transform of the correlator (4.47). The new Green’s function can
be expressed using transverse and longitudinal mass operators %+ (k), 2l (k):

all

4.49 Gap(k Cas Sop
(4.49) A Oy R I TS

Real parts of the mass operators determine the renormalization of the spectrum, and are
neglected below. We shall only consider imaginary parts of the transverse mass operators,
which determine the scattering length (mean-free-path) of the transverse modes, and in the
lowest approximation read as

4
(4.50) Im St (ko(w), w) = i;—ko /S (2k0 sin g) dcosb,
T

where 6 is scattering angle between k and k’. The explicit form of the integral scattering
cross section depends on the particular choice of the correlator (4.47). In our case however,
when the wavelength of the considered excitations is assumed to be much greater than the
characteristic size of the inhomogeneities, the difference between different choices of the
correlation function is mostly reduced to a numerical factor of the order of unity. One can
choose the correlator, for example, in the standard Gaussian form [74]:

(4.51) K(lr —1'|) = (op?) e~ lr-rI"/22
with its respective Fourier transform

Sp2\ w3/2[3
(4.52) S(k) = <p>+ e WL/,

In the spirit of our general approach, the concentration fluctuations must be considered with
regard to the smoothing volume §V, so that the respective variance <6p2> is calculated using
the Poisson distribution of independent impurities inside the volume &V:

p(1—p)
4.53 op?) = =
The correlation length [, then should be identified with the l5y-smoothing length we em-
ployed in Egs. (4.5) and (4.6). However, as will be seen below, the same results can be
obtained if one considers initial distribution of discrete impurities and chooses the inter-
atomic distance a as the correlation length. In any case, kol. < 1, and the expression for
the complex wave number k(w) determined from the pole of the respective Green’s function
takes the form:
(4.54) k() = ko(w) +i‘1/—§ (592) K.
Using Eq. (4.53) and the identification of I, one can obtain for the scattering length:

Q&Wm®q2
¢ dp(r)

1/2

(4.55) e

T p(1 - p)a’® [
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In the limit of small concentrations, p < 1, the derivative of ¢(w,p) with respect to p can
be evaluated in different regions of the spectrum.

To assess the value of the scattering length inside the impurity band we pick the center
of the defect band w? = (w? + w?,)/2. For small concentration one obtains

1/2 13 1
4. -1 ~ ﬂ—_ 2 -
( 56) ls (wC) 4 lé (Ql) 011 p7
where
0F — 9
] = 4600 d2 + 2 — €xo (Q2 Qz)
324 €x) O 246+ 0

does not depend upon the concentration. In the last expression the anticipated small pa-
rameter [/ly has appeared raised to the third power. Taking into account typical values
of this parameter for realistic mixed crystals, one can see that this scattering is completely
negligible. One may also note that this scattering length increases with concentration, which
has a simple physical explanation — the greater the concentration the greater the overlap of
individual local states, and the closer the system is to a uniform continuous medium.

For frequencies from host bands, the situation is qualitatively different:

4
- (w - Q(TO)) N /2 o2 Q(()TO)2 pad -
s < = 16 2\ w2 — Q(TO0)2 A (Q(()TO))
1/2 3
4. -1 > (LO) ~ |T 2 pa N
(4.57) ls (w - ) 16 “3 2\ (Q(LO)) p
0
where (LO) (TO) (TO) (T0)
oo 72 LO)2 _ (TO)2 TO)2  (TO)2
= € $dg (Qo Q ) (91 Qo )
> TO) 4 TO) 2
ff " (02 - aff?)
and o o
LO) 2 LO) 2
23 (99 - af*?)
Qg3 =

€0 .
(Q(r0) 2 _ (T0) 2) (Q[()LO) 2 _ Q%)

are constants. This scattering length is much smaller then for impurity polaritons, and is
decreasing with the increase of concentration, which is quite a regular behavior. Indeed, the
perfectly ordered at p = 0 system experiences increasing scattering due to the impurities.
This difference between scattering properties of regular and impurity polaritons explains
why our approach can be justified to describe properties of the former, while the latter
requires more elaborate treatment of disorder.

4.7 Discussion

In this Chapter we suggested that certain features of optical spectra of mixed crystals in
the restrahlen region can be explained if, along with standard optical phonon vibrations,
one introduces additional impurity induced oscillators with the frequency falling into the



Concept of Local Polaritons ... Alexey Yamilov 55

restrahlen of the host crystal. Justification for this assumption comes from the concept
of LPM’s introduced earlier in Refs. [17, 18, 19, 38] and the results obtained here for 1D
models which show how local polaritons develop into IPB. LPM’s are significantly different
from local phonons, which were extensively studied in connection with optical properties
of mixed crystals. First, they are assumed to exist in the restrahlen region, which in many
cases is filled with phonons. Therefore, it is not exactly a spectral gap, which is necessary for
local states to exist. However, the dielectric function within the restrahlen remains negative,
which means that electromagnetic excitations cannot exist in this frequency region, which is
therefore a gap for electromagnetic excitations. This situation is reversed compared to the
case of pure phonon gaps, which are deprived of phonon states, but contain electromagnetic
ones. Because of non-zero electromagnetic DOS, local phonons acquire their electromag-
netic radiation width, and because of non-zero phonon DOS, LPM’s acquire their phonon
“radiation” width. A significant difference between these two situations is that the density
of electromagnetic states in the phonon gap is so small that the radiative broadening of
local phonons is negligible, while the density of phonon states in the restrahlen is large, and
local polaritons may or may not survive it. Analyzing known phonon DOS, we found that
for some crystals like GaP, ZnS, CuBr, ZnTe, Cul, SrFy, BaF,, PbF,, UF,, CaF, [72],
GaN, AIN,AsN [75], there are actually frequency regions with zero phonon DOS, though
often quite narrow ones. Therefore, the right impurity could in principle give rise to a local
state considered in Refs. [17, 18, 19, 38]. However, restrahlen region of a much broader
class of crystals like NaCl, NaBr, KCI, RbCl and many others [72] are filled with LO
phonons whose DOS within certain regions is relatively small. In the present Chapter we
studied the life-time of LPM’s due to interaction with these LO phonons, and found that
under regular circumstances this life-time is no shorter than the one due to anharmonicity.
We argued, therefore, that LPM’s can actually survive interaction with restrahlen phonon
states, and contribute to the optical properties of the crystals. Moreover, the presence of
some local states within the restrahlen was confirmed experimentally in Ref. [66], where
neutral dopants (S, Sn,Te) give rise to the local electron-phonon state at the frequency
slightly below LO of GaP. What is interesting is that the region where these states reside,
has a relatively high density of phonon states, which obviously did not preclude them from
existence. All these arguments justify the use of local polaritons to describe properties of
the restrahlen of mixed crystals.

The second important property of LPM’s is that their spatial extent is of the order of
optic wavelengths in the restrahl (~ 102 e¢m), which is much larger than the size of local
phonons (several interatomic distances). This fact means that even at residual concentra-
tions of impurities, local polaritons overlap, forming a well developed band. We showed in
this Chapter that this band can be described using the continuous medium approximation
for the impurity subsystem. Neglecting fluctuations of impurity concentration, we derived
an effective dielectric function for our model, and used it to analyze the structure of optical
spectra of mixed crystals. This dielectric function describes new IPB’s, which arise inside
the restrahlen of the host crystal.

The first problem we set out to consider using the concept of impurity polaritons was
weak features in the spectra of so called one-mode crystals Ba/SrF,, Ca/SrFy [56, 57,
ZnCdS, Mn/ZnTe [51], and the one-two-mode behavior of a different group of crystals
In/GaP [58], PbSe/Te [59], K/RbI [60, 61], RbBr/Cl, GaAs/Sb, InAs/Sb, AgBr/Cl [51],
In/GaAs [73]. The existing descriptions of these types of spectrum [51] require a great num-
ber of fitting parameters. Our model allowed us to explain these types of spectra naturally
as manifestations of the impurity polariton mode, which reveals itself differently depending
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upon the relation between fundamental frequencies of crystals at both ends of the concen-
tration range, and the frequency of LPM. Introducing relaxation in a phenomenological way,
we considered reflection and transmission spectra, and demonstrated that our model sur-
vives rather strong damping, and reproduces spectra closed to experimental observations.
For rather thin samples our model predicts a resonant enhancement in the transmission at
the frequency of the impurity polaritons, which accompanies an anti-resonance in reflection.
The latter was observed in many papers [50, 51], but was mostly attributed to the impurity
induced absorption. The only transmission measurements known to us were performed on
pure CuCl [70], where transmission was found to exhibit the maximum similar to the one
predicted in our work. CuCl is a peculiar material, since Cu atoms at low temperature can
occupy several non-equivalent positions, thereby creating internal defects [68, 69]. These
off-center C'u atoms can be responsible for IPB, and therefore, transmission spectra of CuCl
can be considered as the first evidence of this band.!

Since we took the retardation into account, we were able consider not only boundaries
of the spectra but also dispersion laws, DOS, and group velocities of the impurity induced
polaritons. One of the most remarkable properties of these excitations is that their group
velocity is proportional to the concentration, and can be thousands of times smaller than
the speed of light in vacuum. The smallness of the group velocity makes dispersion curves
of the excitation look almost flat. Rather similar dispersion curves were measured experi-
mentally in Ref. [68] in one-two-mode mixed crystal Gag.70ln9.30P with the use of Raman
spectroscopy. It would be interesting to carry out additional steady state and time-resolved
experiments in this material, which could verify predictions of our theory and provide more
solid support for our concept of impurity-induced polaritons. Our approach also allowed us
to study scattering of impurity polaritons due to fluctuations of concentrations. We found
that their scattering length is significantly different from the similar characteristics of regular
polaritons of the host material. The scattering length of impurity polaritons is proportional
to the concentration, making the scattering less efficient with an increase of concentration.
Quantitatively, the scattering length is very large, much larger than the attenuation length
due to inelastic damping, making scattering due to concentration fluctuations negligible for
impurity polaritons. This finding is in agreement with the results obtained in Chapter 3 and
provides a firm foundation for our approach. The scattering length for regular host polari-
tons, at the same time, is inversely proportional to the concentration, and is rather short.
Therefore, studying optical properties related to these excitations requires more elaborate
theoretical approaches used in many papers on the subject (see, for instance, Ref. [65]).

We hope that the present results will revive an interest of experimentalists in the prop-
erties of restrahlen of mixed crystals. In our opinion, it would be interesting to study
transmission spectra through thin slabs of one-two mode crystals in both CW and time
resolved experiments. Such experiments could provide additional insight into properties of
impurity polaritons, and elucidate their dynamic properties, such as group velocities. Com-
paring experiment and present theoretical results, one can obtain additional information
about the material parameters of these systems.

1A.J. Sievers drew our attention to an alternative explanation of the IR reflection
spectra of CuCl. In Refs. [39], an additional absorption line inside the gap was attributed
to the interaction of TO phonons with acoustic phonons arise from by strong anharmonic
terms in the potential of Cu atoms, rather than due to an additional polariton band
associated with the off-center ions. Although there exists strong evidence in favor of the
model discussed in Refs. [76], it does not explain, however, the enhanced transmission
observed in Ref. [70].



Chapter 5

Tunable LPM’s in
semiconductors

5.1 Introduction

Capture of non-equilibrium charge carriers by a deep defect center provides an important
channel of energy dissipation in wide-bandgap semiconductors and insulators [77]. A signif-
icant amount of energy, at least equal to the binding energy, er ~ 1eV, of the electron (or
the hole) to the center, should be released in each capture event, is usually accompanied
by a substantial lattice relaxation. Several mechanisms can be responsible for the electron
transitions involving deep levels in semiconductors. The energy lost by the captured carrier
can be transferred either to photon(s) in the radiative transition [78], or to nearby carrier
in the Auger effect [79], or to a series of long-wavelength acoustic phonons when the carrier
descends a staircase of the excited states in the cascade mechanism [80], or to the local
vibration quanta when multi-phonon emission [81] takes place. There are some indirect
[82, 83, 84] and direct [85, 86, 87, 88, 89, 90, 91, 92, 93, 94] evidence that capture or release
of the charge carrier is associated not only with the lattice relaxation but, more importantly
with the alteration of local vibrational modes (LVM’s), i.e. with changes in the local elastic
constants.

In this Chapter we show that (LPM’s) are sensitive to the charge-state induced changes
in local elastic constants and should, therefore, exhibit the effect similar to charge-state-
dependent LVM’s.

5.2 Local polariton states in 3D

The system under consideration is a polar 3D crystal where dynamics of the atoms can be
described by the classical Newton equations. Polaritons in the system arise as collective
excitations of the polarization waves related to optical phonons of “right” symmetry, cou-
pled to the electromagnetic field by means of a coupling parameter a proportional to the
oscillator strength of the respective oscillations. The electromagnetic subsystem is described
by Maxwell equations that include the polarization density related to phonons [38].

In a perfect crystal, the solution of the system of the Maxwell and atomic equations in the
long-wave approximation yields the dispersion equation. The dispersion curves, of course,
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Figure 5.1: Schematic phonon dispersion curves in a polar crystal.

depend on the symmetry of the crystal. For our consideration, however, the particular form
of the dispersion is not important as long as the polariton gap exists. Therefore, in the
long-wave approximation we can present the upper, Q4 (k), and lower, Q_(k), polariton
branches in the following isotropic form [38] (see Fig. 5.1):
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(5.1) Q% (k) = i <\/[QL(k) Ny d2>

Here Q2 (k) is the TO branch of the phonon spectrum, which in the long-wave limit can be
approximated as Q% — v? k?, where v, determines the spatial dispersion of TO phonons, ¢
is the speed of light in the crystal, and k is the wave vector. The width of the polariton
bandgap, (Qo, /Q3 + d?), is determined by a parameter d, related to the coupling constant
a.

In ideal crystals, LO phonons do not interact with transverse excitations. In the presence
of defects, however, restrictions due to momentum conservation are relaxed, and the energy
of LPM can leak via LO phonons, if the latter have a nonzero density of states at the
frequency of LPM. In this case, the phonon component of LPM becomes delocalized, but its
electromagnetic component remains localized. There are few crystals where the dispersion
of the LO branch, Qﬁ (k) = /% +d? — vﬁ k2, is not large enough to fill the entire bandgap
and LPM can exist as truly localized states. In most cases, the LO modes have rather
large dispersion with a non-zero density of the phonon states throughout the entire gap.
However, as it was shown in the previous Chapter the large dispersion leads to a relatively
small density of the LO states, and the lifetimes of LPM’s in certain materials can be large
enough for their survival.

The equation for the frequency of LPM, €., in the presence of a substitutional defect
in a two-sublattice crystal was obtained in Ref. [38]. Assuming that the defect replaces
an ion in the negatively charged sublattice, one can write this equation in the following
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approximate form

(5.2)
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where dm is the deviation of the mass of the defect from that of the host atoms, 63 is
the local change in the elastic constant, M is the total mass of the positive (m4) and
negative (m_) ions, p = mym_/(my + m_) is their reduced mass, and a denotes the
lattice constant. This equation describes the LPM arising in the vicinity of the TO long-
wavelength limiting frequency g. Obviously, the real-value solution, Q,., of Eq. (5.2)
exists when the expression in the braces is positive.

The results obtained in earlier Chapters show that the profile of electromagnetic-wave
transmission is shown to have an asymmetric shape (Fano resonance) where the maximum
is followed by a closely spaced zero. The maximum value of the transmission exponentially
depends on the position of the defect in the crystal and, without absorption, it reaches unity
for the defect placed at the center of the system. The width of the resonance decreases
exponentially with an increase of the size of the system.

Because of the large spatial size of the local-polariton states, even at a very low impurity
concentration, ~ 10'2 em 3, they significantly overlap. As a result, IPB is formed inside the
polariton band gap (see Chapters 3,4). This band has a number of interesting properties.
For instance, the group velocity of electromagnetic excitations, propagating via such a band,
has been found proportional to the concentration of the impurities, and it can be significantly
smaller than the speed of light in vacuum. As we saw earlier, for a large range of defect
concentrations, the position of the boundaries of the IPB linearly depends on the frequency
Qe of the “seed” LPM. Therefore, one can expect that the charge-state induced changes
in the local elastic constants of the deep centers, that generate the IPB, will affect its
boundaries in the same way as they affect the frequency of LPM at smaller concentrations.
In the next section, we will explore this idea in reference to the well studied substitutional
oxygen defect in gallium phosphide.

5.3 Charge-state induced changes in local elastic con-
stants: Op center in gallium phosphide

A striking alteration of the local elastic constants was established by Henry and Lang [82] in
their detailed experimental studies of the charge states of the Op center in GaP. This deep
donor center has two bound states, 1 and 2, with one or two bound electrons, correspond-
ingly. Henry and Lang concluded that a significant decrease in the local lattice frequency
after capture of the first or second electron is needed in order to consistently explain a
variety of experimental data on photoionization and thermal emission (deep level transient
spectroscopy) involving the two states in question. For state 2, where the second electron
is trapped by or released from the electrically neutral center with a short-range attraction
potential, this effect can be understood in the framework of the so called “zero-radius po-
tential” model [83, 95, 96]. (Such a model can be justified if the depth of the impurity
potential well for the second electron at the center is small compared to its binding energy,
er2 [83]) It can be shown [95, 96] that for the “zero-radius potential” center the adiabatic
potential curves U (g), corresponding to bound and extended (continuum) electron states,
would rather contact than intersect each other at the point g. (Fig. 5.2) where the electron
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binding energy goes to zero [83]. (Here ¢ represents the configurational coordinate corre-
sponding to a single mode of local vibrations that is coupled to the localized carrier(s).) Let
us demonstrate that this rather general requirement accounts for the alteration of LVM of
the Op center in GaP introduced ad hoc in Ref. [82].

In the adiabatic harmonic single-mode approximation, the potential energy of the heavy
ion, which itself is an eigenvalue of the light-electron Hamiltonian, can be presented as

_ 50(12
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(56.3) Un (q) + Ne(g) + Usnyny + (2 — N) E..
The first term in this equation describes the elastic energy in the absence of the localized
electrons with By being the elastic constant, and

2
(5.4) €(q) =0 — Mg — o
is the localized-electron energy with electron-phonon coupling taken into account by expand-
ing the electron energy in powers of g about the equilibrium point in the absence of electrons.
U, is the Hubbard repulsion energy for two electrons localized at the center, and the last
term in Eq. (5.3) is the energy of the electron in the conduction band. n, = 0,1 is the
occupation number of a one-electron localized state with a spin o, and N =) _n, =0,1,2
is the number of electrons trapped by the center. (In Eq. (5.4), we have chosen the negative
sign at the quadratic term to assure the internal contact of terms U; (g)and Us (¢); the sign
of A is irrelevant.)
By using the contact condition at the point g,

(5.5) Ui (g) = Us (@), (ddiq) - (ddiq)

it is easy to show that E, — ey — U, = A\?/27 and therefore the binding (thermal ionization)
energy of state 2 is

(5.6) er2 = Ui (q1) — U2 (g2) = 2v (1 — ;\) (1-2z)

Here gn is the equilibrium configuration coordinate of the center with N trapped electrons,
and z = 7v/fo. By the same token, the optical ionization energy of state 2 is

)\2

(5.7) €opra = U1 (q2) — Uz (g2) = o (1_20)

Then with experimentally measured values of ers = 0.89 eV and ey = 2.03 eV for the
Op center in GaP [82], Egs. (5.6) and (5.7) yield x = v/f8y = 0.36. This allows us to
immediately evaluate the ratios of the LVM frequencies for different charge states of the Op
center in GaP:

1—2
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in fairly good agreement with ratios wa/w; = 0.65 and wy /wg = 0.78 extracted by Henry
and Lang [82] from numerous experimental data.
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Figure 5.2: Configuration coordinate diagram for the charge states N = 1,2
of the Op deep center in GaP.

The goal of the above simple exercise is to show that if a multi-charge deep center in one
of its states (IV = 2) can be described by the “zero-radius potential” model, then non-linear
electron-phonon coupling may result in a substantial change in the local elastic constants
associated with this center when it captures or releases charge carriers. If the second electron
is captured by the neutral center as a result of the radiative transition, the energy of the
emitted photon is

/\2
2y (1— m)2 ’

From Egs. (5.6), (5.7), and (5.9), the following criterion of applicability of the “zero-radius
potential” model can be derived (see also Ref. [83]):

(5.10) €T2 = \/€opt2€i2,

as opposed to the standard relation [81]

(5.9) €2 = U1 (q1) — U2 (q1) =

(5.11) er2 = (€opt2 + €12) /2,

held for deep centers with linear electron-phonon coupling when no change in the local
frequencies is expected.

If the parameters of a deep center satisfy relation (5.10), as it happens for the Op center
in GaP [83], the capture (release) of the first or second electron will diminish (increase) the
local elastic constants in the vicinity of this center. To evaluate the effectiveness of such
a rearrangement of the LVM’s, let us consider a simple case of the p-type semiconductor
doped by shallow acceptors with the concentration N4 and partially compensated by the
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deep multi-charge donors of the type considered above with a concentration Np < N4. At
equilibrium, all the deep donors will be free of electrons (state 0), i.e. positively charged.
Then, incident light with photon energy close to E; — €,p11 will transfer electrons from the
valence band to the states with N = 0, thus recharging the deep centers (+ — 0). (Here
E, is the electron bandgap and €., is the optical ionization energy of state 1.) Further
evolution of the system depends on the sign of the effective two-electron correlation energy
[97, 98]

(5.12) Uers = Uo (q0) + Uz (g2) — 2U1 (q1) = €71 — €72,

where er; = Up (go) — Ui (q1) is the thermal ionization energy of state 1.

By using experimental values [82] of eq = 1.14 eV and er2 = 0.89 €V, it is easy to find
that Uesy ~ 0.26 eV > 0 for the Op center in GaP. This means that, in this case, the
electrically neutral state 1 generated by photons with energy (E, — €opt1), which is close to
1.5 eV [82, 84], remains metastable under constant illumination conditions and will not be
further converted into negatively charged state 2. Then the electro-neutrality condition,

combined with the standard rate equations for the concentration N% ~ Np — N of the
deep neutral donors

(5.14) OND /0t = aX N — p(vp) oLh N,

and for the concentration N = Ny — N of shallow neutral acceptors,
(5.15) ONQ/8t = p(vp) opa Ny — epalNQ,

allow one to evaluate the percentage of recharged deep centers. Here p is the concentration

of free holes, (v,) is their mean thermal speed; o} (o%4) is the non-radiative capture cross-

section of the free holes by the deep neutral donors (shallow negative acceptors); ath is the
cross-section of the optical photo-neutralization of state 0; J is the flux of incident photons;

epa = N, (vp) af,{g exp (—I4/kpT) is the rate of thermal emission of the holes by the shallow
acceptors with the ionization energy I4; N, is the valence-band density of states; kg is the
Boltzmann constant.

From Eq. (5.15) it follows that at not very low temperatures such that T > I4 [kp In(N,/Na)] ",

all the shallow acceptors are ionized, i.e. the concentration of the free holes [see Eq. (5.13)]

p is approximately N4 (N4 > Np). Then for the steady-state illumination conditions, Eq.

(5.14) yields

-1
NO N ) th

(5.16) D14 “7’%%1 .
Np Jo b

This means that the deep donors will be almost completely photo-neutralized (+ — 0), if
the flux of the incident sub-bandgap photons, J > 10!® em~2s~!. (For this estimate, we
take Jf,’f =5x 1072 em~2, ogft =13 x1071% em™2, Ng = 10" em™3, (v,) = 107 em/s
[82, 84]). Such a photon flux can be easily generated by a 1W-source for a spot area of
the order of 1 ¢m?. In a p-type semiconductor with positive-U,s; centers, this will convert
a high-frequency LVM associated with these centers into a low-frequency one (wg — wi).
However, for a n-type material the photo-neutralization of the deep positive-U, s centers
will have the opposite effect: it converts the low-frequency LVM into the high-frequency one
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Figure 5.3: Sub-bandgap light-absorption-induced modification of LVM’s
for the different charge states of a deep center with (a) positive and (b)
negative effective two-electron correlation energy in the semi-insulating (1),
p-type (2), and n-type (3) semiconductors.

(wa = wq). If the concentration of the deep centers is high enough (Np > N4), then the
light from the sub-bandgap or fundamental regions will convert the intermediate-frequency
LVM into the high and low-frequency LVM’s: w; — wp, wi — wy [see Fig. 5.3a and Eq.
(5.8)].

For materials with negative-U,s centers, the continuous sub-bandgap (impurity) illu-
mination should, in principle, have more a profound effect on LVM due to the so called
disproportionation [85], i.e. thermodynamically driven spontaneous decay of the metastable
electron state 1 into the states with the next higher, state 2, and the next lower, state 0,
number of electrons. In p-type materials, it will initially convert the high-frequency LVM,
wp, into the low-frequency one, wy, associated with the neutral donors, which later on due
to Ueps < 0 will be further spontaneously converted into the lower one, wy. For n-type ma-
terials, as in the previous case of positive U.y¢, the effect will be opposite: ws — w1 — wo
(Fig. 5.3b). And, finally, in semi-insulating material, when the Fermi level is pinned by the
negative-U, ¢ s defects [97, 98], the illumination should convert the lowest and highest energy
LVM into the intermediate one: ws — wy, wo — wy (Fig. 5.3b).

5.4 Centers and materials perspective for alteration of
LPM’s

It is interesting to compare predictions based on our simple model with the observed op-
tically induced conversion of the charge-state dependent LVM bands in the oxygen doped
GaAs [85]. It has been proven that the off-center substitutional O4s in GaAs represents
one of the few negative-U,ss systems in compound semiconductors [85, 86]. And indeed,
during illumination with sub-bandgap light with photon energy around 1.37 eV, the high-
energy 730.7 cm~! band A is almost completely converted into the low-energy 714.9 cm !
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band B through the other low-energy 714.2 em~! band B’. These bands were attributed,
correspondingly, to the unoccupied, singly, and doubly occupied electron states of the O 45
center in certain semi-insulating samples of GaAs, where the Fermi level was pinned below
the lowest, doubly occupied, state 2 of O 4, [85, 86]. The material in question is analogous
to p-type semiconductors with the negative-U,s; centers in our classification. We conclude
that, though in accordance with our model wy > ws, the frequency of the singly occupied
state, wy, is almost the same as that of the doubly occupied one, ws, as opposed to the case
of the Op center in GaP for which w2 — w? = w? — w? > 0. An extensive discussion of the
electronic structure of O 45 in GaAs can be found in Ref. [86]. According to Skowronski [86],
oxygen in GaAs creates a complex off-center defect with dangling gallium hybrids involved,
whose coupling strongly depends on the charge state of the center. The adiabatic poten-
tials of the coupled dangling bonds in tetrahedrally bonded and amorphous semiconductors
are shown to have a complex multi-well structure that is extremely sensitive to parame-
ters of the structural defects in question [99, 100, 101]. For instance, a stretched bond of
the type, participating in the formation of O 45 in GaAs, with one or three electrons, will
be strongly coupled to at least two LVM’s with charge-state dependent frequencies [100].
Though such a defect is not described by the above single-mode model, it can be responsible
for photo-induced changes in the local elastic constants.

Let us now return to Op in GaP. The elastic constants for the three different charge
states, By (N = 0,1, 2 enumerates the charge states of the center), of this center are directly
related to the frequency of the correspondent LVM’s given by Eq. (5.8):

&:<%>2. ﬁ:<‘ﬂ)2
B1 wi) 7 Bo wo)

We want to check if this defect can give rise to LPM’s in any of its charge states. According
to Eq. (5.2), the criterion for the appearance of LPM’s is set by

08N (m+ ) 2 om
g M7 p

where 68y = By — B with 8 being the elastic constant of the host atom. Therefore, it is
not sufficient just to know the ratios of the local elastic constants, we need to establish their
values. It is equivalent to finding the frequencies of LVM’s since Bn ~ mow3;, where mo is
the mass of the oxygen atom. Direct experimental measurements of these frequencies are not
available to us; however, it is possible to determine them from the configuration coordinate
diagram of this center (Fig. 5.2). Calculated by means of the “zero-radius potential” model,
the multi-phonon emission electron-capture cross-sections were compared in Ref. [83] with
the experimental data from deep level transient spectroscopy [82]. It gave wq ~ 195 cm ™!
for the Op defect in GaP. This value differs from the one (w; ~ 155 em~1) obtained in
the original paper (Ref. [82]), where fitting is believed to be somewhat inconsistent [83].
Later, in Ref. [102] it was argued that because of a strong field dependence of the thermal
emission energy, ey, of the electron from the singly occupied state, the deep level transient
spectroscopy data should be re-evaluated. This led to a modified value of the local-phonon
energy wy ~ 290 cm~!. We believe that the above re-evaluation of w; should not affect the
ratios of the frequencies given by Eq. (5.8), for in the framework of the model developed, it
is based on the value of parameter z = v/f8y = 0.36. The latter, in turn, was obtained by
means of the ratio €qpe2/€r2 involving experimentally measured ionization energies of the
state N = 2 with a short-range potential that can hardly be affected by the electric field in
the area of the p-n junction.

(5.17) >0,
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Examining criterion (5.17) for LPM’s to occur, one can see that in the most favorable case
é8n should be positive while dm should be negative. This has a simple physical explanation.
As the frequency of the TO mode is defined by w;, = (8/ u)l/ % in order to make the defect
frequency Ql(i\? advance into the polariton bandgap (above the TO frequency) one should
either make Sy larger than 8 (~ 175 N/m in gallium phosphide) of the host atoms, or
decrease the mass of the defect.

For the case of the oxygen center in gallium phosphide where dm < 0, we examined
three values of 1 obtained by means of all three values of w; from Refs. [82, 83, 102].
Then we used ratios (5.8) between the rest of the LVM frequencies to determine the local
elastic constants Sy of the defect in three charge states. We find that using the data from
Refs. [82, 83], it is not possible to satisfy our condition Eq. (5.17). On the other hand,
w; ~ 290 em~!, obtained in Ref. [102], results in By ~ 160 N/m, B ~ 95 N/m, and
B2 ~ 40 N/m. Even though for all three charge states 68y < 0, Bn=o still satisfies Eq.
(5.17). Thus, we predict that in the p-type (semi-insulating) GaP:0, the LPM associated
with N = 0 charge-state will be eliminated (created) by illuminating the sample with the
light with a photon energy close to 1.48 eV (0.96 eV') (see Ref. [82] for details), and as it
was shown for the charge-state dependent LVM’s, this process is reversible. We also stress
that the LPM’s arise/disappear between TO (365 cm~!) and LO (405 em™!) frequencies,
in contrast to the LVM’s that occur either below or above this region.

The oxygen defect in GaP cannot, by any means, be considered as a single candidate
for tunable LPM’s to be observed. Semiconductors and insulators that possess a complete
(omnidirectional) polariton gap include well known materials such as GaP, SiC, ZnS,
ZnTe, Cul, CaFs, SrF», BaF,, PbF, [103, 104], as well as extensively studied nitrides
AIN,GaN,InN [75]. In these materials many impurities form deep centers [77, 50, 105,
106]. The charge-state dependent LVM’s, which can be considered as precursors of tunable
LPM’s, remain relatively unstudied. In a recent paper by Wetzel et al,[89] the charge-state
dependent triplet of LVM’s generated by oxygen in GaN has been reported, which is similar
to the GaP:0O deep center. Even though this defect does not satisfy our condition for LPM’s,
Eq. (5.17), (68 < 0 and dm > 0 for this defect), it gives us confidence that some defects
can give rise to LPM’s in crystals with the complete polariton bandgap. Our optimism is
also supported by the fact that there are many defects that satisfy this criterion but occur
in materials without a polariton gap, namely: GaAs:O, [85, 86] EL2 center in GaAs [90],
GaAs:Si [92], Si:H [93], and AlAs:Be [94], Si:C [87, 88].
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Chapter 6

LPM’s in multiple quantum well
heterostructures

6.1 Introduction

Equations describing dynamics of the light-exciton interaction in multiple quantum well
(MQW) heterostructures are essentially equivalent to a model of 1D chain of dipoles used
in Chapter 2,3. Similar equations also appear in the theory of atomic optical lattices [107].
The essential difference between results presented in this Chapter and previous studies
stems from the peculiarities of the Bragg arrangement. Using Greens’ function and transfer
matrix formalisms, we study both eigenfrequencies of LPM’s for different types of defects
and transmission properties of the defect structures. Using parameters of the system studied
experimentally in Ref. [26, 27], we predict which defects will produce the most significant
changes in transmission and reflection properties of realistic MQW structures.

Optical properties of MQW'’s have attracted a great deal of interest recently [21, 22, 23,
24, 26, 27, 108, 109]. Unlike other types of superlattices, excitons in MQW are confined in the
planes of the respective wells, which are separated by relatively thick barriers. Therefore,
the only coupling between different wells is provided by the radiative optical field. The
coupling results in MQW polaritons — coherently coupled quasi-stationary excitations of
quantum well (QW) excitons and transverse electromagnetic field. The spectrum of short
MQW structures consists of a number of quasi-stationary (radiative) modes with finite life-
times. This spectrum is conveniently described in terms of super- or sub-radiant modes
[21, 23, 108]. When the number of wells in the structure grows, the life-time of the former
decreases, and the life-time of the latter increases. In longer MQW structures, however, this
approach becomes misleading, as discussed in Ref. [110], and a more appropriate description
is obtained in terms of stationary modes of an infinite periodic structure. The spectrum
of MQW polaritons in this case consists of two branches separated by a gap with a width
proportional to the exciton-light coupling constant I' [21, 23]. The length at which this
description becomes preferable, usually depends upon a problem at hand. For instance, even
though the discrete structure of the sub-radiant modes of 100 long MQW in Refs. [26, 27]
could be resolved, the description of the gap region in terms of the super-radiant mode leads
to an apparent contradiction with the absence of significant luminescence in this region. If
one is interested in properties of the gap region, a “long system” usually means that it is
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longer than the penetration length of radiation into the sample. The latter length depends
upon the frequency, therefore the system can be long enough for frequencies close to the
center of the gap, and still “short” for frequencies in the vicinity of the band edges. Systems
similar to those studied in Ref. [27] can be considered sufficiently long for 90% of the gap
region when the number of wells becomes close to 200.

In a number of papers [22, 26, 27, 109] it was shown that the width of the polariton
bandgap can be significantly increased by tuning the interwell spacing, a, to the Bragg
condition, a = X\g/2, where A\ is the wavelength of the light at the exciton frequency Q.
Under this condition, boundaries of two adjacent gaps become degenerate, and one wider
gap with the width proportional to v/T is formed. Detuning of the lattice constant from the
exact Bragg condition removes the degeneracy and gives rise to a conduction band in the
center of the Bragg gap [110]. A well-pronounced Bragg polariton gap was observed in re-
cent experiments [27] with InGaAs/GaAs Bragg structures with the number of wells up to
100. These experiments convincingly demonstrate that despite homogeneous and inhomo-
geneous broadening, the coherent exciton-photon coupling in long MQW is experimentally
feasible. Polariton effects arising as a result of this coupling open up new opportunities for
manipulating optical properties of quantum heterostructures.

One such opportunity is associated with introducing defects in MQW structures. These
defects can be either QW'’s of different compositions replacing one or several “host” wells,
or locally altered spacing between elements of the structure. It is well known in the physics
of regular crystals (see, for instance, Ref. [9]) that local violations of otherwise periodic
structures can lead to the appearance of local modes with frequencies within spectral gaps
of host structures. This idea was first applied to MQW in Ref. [111], where it was shown
that different defects can indeed give rise to local exciton-polariton modes in infinite MQW.
Unlike regular LPM’s in 3D periodic structures, these modes are localized only in the growth
direction of the MQW, while they can propagate along the planes of the wells. Therefore,
one should clearly distinguish these defect polariton modes from well known interface modes
in layered systems or non-radiative two-dimensional polariton modes in ideal MQW [28, 29,
112]. The latter exist only with the in-plane wave numbers, k)|, exceeding certain critical
values, while LPM in a defect MQW structure exists at k)| = 0 and can be excited even at
normal incidence.

In this Chapter we present results of detailed studies of LPM’s produced by four different
types of individual defects in Bragg MQW structures. The peculiar structure of Bragg
MQW?’s results in a wider than usual polariton gap, which is actually formed by two gaps
with degenerate boundaries. This property has a profound effect on the properties of local
modes, leading, for instance, to emergence of two local states from a single defect. The
similar effects of doubling the number of local modes was also predicted in the case of
braggoritons - excitations arising inside photonic band gaps of periodic structures made of a
dispersive material, if the resonance frequency of the dielectric functions happens to belong
to the gap [113].

We neglect in-plane disorder in individual QW’s, and assume that apart from a deliber-
ately introduced single defect, the structure remains ideally periodic. We consider LPM’s
with zero in-plane wave vector only. Such modes can be excited by light incident in the
growth direction of the structure, and can result in the resonance transmission of light with
gap frequencies. This effect is studied both analytically and numerically with the nonra-
diative decay taken into account phenomenologically. The rate of the non-radiative decay
may include contributions from homogeneous as well as from non-homogeneous broadening;
such an approach was shown in Ref. [114] to give a good description of high quality MQW
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structures.

6.2 Defect modes in Bragg MQW

In order to describe optical properties of QW’s one has to take into account the coupling
between retarded electromagnetic waves and excitons. This is usually done with the use
of the non-local susceptibility determined by energies and wave functions of a QW exciton
[21, 112]. The treatment of the exciton subsystem can be significantly simplified if the
interwell spacing is much larger than the size of a well itself. In InGaAs/GaAs MQW
structures studied in Ref. [27], on which we base our numerical examples, the width of the
QW layer amounts only to about 10% of the period of the structure. In this case, one
can neglect the overlap of the exciton wave functions from neighboring wells and assume
that an interaction between well excitons occurs only due to coupling to the light. It is
also important that the width of the wells is also considerably smaller than the exciton’s
Bohr radius, and, therefore, one can neglect spatial extent of the wells, and describe them
with polarization density of the form: P(r,z) = P,(r)d(z — 2z,), where r is an in-plane
position vector, z, represents a coordinate of the n-th well, and P,, is a surface polarization
density of the respective well. Optical response of the system even in the presence of
inhomogeneous broadening is successfully described by the linear dispersion theory (see,
for instance, Ref. [114]) based upon a single oscillator phenomenological expression for the
exciton susceptibility
d2
(6.1) X= 02 — w? — 2iypew’

where ()¢ and ~,, are 1s exciton frequency and relaxation parameter respectively, d is a
parameter describing the light-exciton coupling. For our purposes, however, it is more
convienient to consider explicitely equations of exciton dynamics coupled with Maxwell
equations for the electromagnetic field. In the case of waves propagating along the growth
direction of the structure, which is considered here, only excitons with the zero in-plane
wave number are coupled to light, and the equations of motion can be presented in the form
similar to Egs. (2.1,2.3):

1
(6.2) (22 — w?® = 2iypw) Py = =L E(zn),
™
w? d’E () w?
(63) C_ZE (Z) + i = —471'0—2 ; P,6 (Z - zn) ’

where (2, is the exciton frequency of the n-th QW. The strength of the exciton-photon
coupling in Eq. (6.2) is described by the parameter I',, equal to the radiative decay rate of
a single n-th well. This parameter is related to the parameter d of Eq. (6.1) according to
d?> = (cI') /(mw), where w characterizes the spatial extent of exciton wave functions in the
growth direction (we assumed it to be zero when we described the exciton polarization by
the d-function). In what follows, we refer to I';, as to a coupling parameter. The relation
of I';, to the radiative life time can be established, for instance, if one uses Egs. (6.2) and
(6.3) to obtain the reflection coefficient for a single n-th QW, r,,

2iwly, - il'n
Q% — w2 — 2%&1(’)/"7' + Fn) = Q0 —w— Z(’an" + Fn)

(6.4) rp =
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which in the resonance approximation (the last expression in Eq. (6.4)) coincides with the
standard linear dispersion theory expression used in Refs. [22, 27] and others.

In an infinite pure system, all I',, = T'g, Q, = Qo, 2z, = na, where a = Ag/2 is the
Bragg’s interwell separation. Eq. (6.3) describes an electromagnetic wave of one of the
degenerate transverse polarizations, propagating in the growth direction of the structure.
This equation coincides with equations used in Refs. [19, 107] and here, in Chapters 2,3, for
one-dimensional chains of atoms. The spectrum of ideal periodic MQW’s with homogeneous
broadening parameter v,, = 0 has been studied in many papers [21, 23, 110, 107, 115, 116].
In the specific case of Bragg structures, the exciton resonance frequency, {1, is at the center

of the bandgap determined by the inequality w; < w < w,, where w; = Qg (1 —+/2T/ 71'Q())

and w, = Qo (1 + /2T /7'['90) [110]. In the formed bandgap the electromagnetic waves
decay with the penetration (localization) length,

2
(6.5) 15" =a"'1n | cos(koa) + gsin (koa) — \/[cos (koa) + gsin (koa)] -1,

where kg = w/c and
4I‘0w
(6.6) g = o

As in Chapter 2, parameter 3 is proportional to the susceptibility of the well in the absence
of exciton relaxation, Eq. (6.1), and is the main quantity used in our theory to characterize
the optical response of the single well. The homogeneous broadening can be taken into
account by adding 2ivy,,w in the denominator of Eq. (6.6); we, however, neglect it until
the last section of this Chapter, where transmission and reflection spectra of defect MQW
structures are discussed.

As it was mentioned earlier, for structures, which are longer than the penetration length,
lg, for the most of the band-gap, consideration based upon modes of the infinite periodic
structure is more appropriate. Using Eq. (6.5) one can show that in the case of 140
(for GaAs/AlGaAs) or 200 (for InGaAs/GaAs) wells long MQW?’s of the type considered
in Refs. [26, 27], lo > Na for 90% of the bandgap of the infinite structure characterized
by the boundaries w; and wp,. This bandgap is the frequency region where we look for
new local states associated with the defects. In this Chapter, we consider four types of
such defects. First of all, one can replace an original QW with a QW with different exciton
frequency (Q-defect). This can be experimentally achieved by varying the composition of the
semiconductor in the well. Another possibility is to change the coupling constant (I'-defect)
at one of the wells. Even though an experimental realization of this defect in its pure form
is not straightforward, it is still methodologically important to consider such an idealized
situation in order to be able to estimate how changes in T" could effect optical properties
of the systems with real defects. The third possibility is to perturb an interwell spacing
between two wells. Here we distinguish two defects, which we call a- and b-defects. The
former is realized when the interwell spacing between a pair of wells is changed (Fig. 6.1a).
It can be seen that this induces a shift in the position of all wells that follow the defect,
making it significantly nonlocal. The b-defect is produced when one shifts just one well
keeping positions of the rest unchanged (Fig. 6.1b). Experimental realizations of these two
defects is simple and can be done at the sample growth stage. In the following section we
show that each of these types affects the optical properties of the MQW lattice in remarkably
different ways.
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a-defect (nonlocal)

alajala]| b
b-defect (local)

ajlajalal| b alala

2a-b

Figure 6.1: Two types of interwell spacing defects. The nonlocal a-defect
(a) as opposed to the local b-defect (b). Solid bars represent locations of
QW’s in the defect lattice. The empty bars represent what would have
been a perfectly ordered MQW lattice.

We start with Q- and I'-defects which are similar in a sense that they both introduce
perturbations in the equation of motion, Eq. (6.2), which are localized at one site (the
diagonal disorder). Therefore, they can be studied by the usual Green’s function technique
like the one used to treat the localized phonon states in impure crystals (see, for instance,
Ref. [9]). Using the polarization Green’s function defined in a standard way by adding &y, n,
to Eq. (6.2), we can express the polarization of the n-th QW in terms of the polarization
of the defect QW, P,,, as

P, =G(n—ng)Py,.

(see details of the derivation, as well as an expression for G(n—ng) in Chapter 2). Allowing
n = ng, and using expression for the Green function from Eq.(2.9) one obtains the equation
for eigenfrequencies of LPM:

67) P g sin (koa)

\/[cos (koa) + %sin (koa)]2 -1

where the function F, = (9% — w?) / (9% — Q2) corresponds to the Q-defect and the function
F. =Ty/(I'1 —Tg) describes the I'-defect; ©; and I’y denote respective parameters of the
defect layer. Eq. (6.7) is an exact consequence of Eqs. (6.2) and (6.3), and was first derived
in Chapter 2 for the -defect. There, in the longwave approximation, we found that the
equation had one real valued solution for any ; > Q¢. We find that in the case of the
Bragg structures, there are always two solutions for both types of defects, one below Qg
and one above. This is a manifestation of the fact that the bandgap consists of two gaps
positioned one right after the other. The above equations can be solved approximately when
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Figure 6.2: Positions of the local modes in the bandgap (1.486 - 1.496 V)
for the Q-defect (a), a-defect (b), and b-defect (c) as functions of the defect
strengths. Numerical values of the exciton resonant frequency and the
exciton-light coupling constant were taken the same as in InGaAs/GaAs

structures studied in Ref. [27].
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a-defect
Y, Yo
Cavity
1+ / \ S~ |
Evanescent mode Evanescent mode

Figure 6.3: Matching the solutions for half-infinite perfect MQW with cav-
ity modes 1)+ one can obtain the dispersion equation for (quasi)local modes
(in finite systems) of such a system with the defect.

Ty < Qo, which is the case for most materials. For the Q-defect, one solution demonstrates
a radiative shift from the defect frequency €y,

(1) Q1 — Qo
(6.8) Waer = M =Ty ’

i Vi, =) (0 —w)

while the second solution splits off the upper or lower boundary depending upon the sign of
Ql - Q():

2
(2) _ 1 T Q]_ - QO
(6.9) Wyep = Wu,l £ §(wu —wr) <5To )
where one chooses w,, and “=” for Q; < g, and w; and “+” in the opposite case. This

is illustrated in Fig. 6.2a. It can be seen that the shift of wtgle)f from the defect exciton
frequency ; is negative for 2; > Qg and positive for ; < Qy. The magnitude of the shift
is of the order of the coupling constant Iy, which is usually rather small, and this fact, as it
is shown in the next section, is crucial for the optical properties of the defect. The second
local mode w((i?f lies very close to the edges of the bandgap, and it would be, therefore, very
difficult to distinguish it from the modes making up the allowed bands even for negligible
dissipation.
In the case of the I'-defect, one again finds two solutions of Eq. (6.7):

(6.10) WD = wug 2 (01 — To)” (wu — wr) -

which exist only for 0 < I'y < I'g and are very close to the gap boundaries. The situation
is similar to the second solution for the 2-defect, and one can conclude, therefore, that the
I'-defect would not affect significantly the optical spectra of the system.

The next defect we consider, the a-defect, is shown in Fig. 6.1a. One can see that this
defect differs from the other two in a fundamental way. An increase in an interwell distance
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between any two wells automatically changes the coordinates of an infinite number of wells:
zn = na for n < ng and 2z, = (b—a)+na for ng < n, where b is the distance between the n-th
and (n + 1)-th wells. Therefore, this defect is non-local and cannot be solved by the same
methods as the two previous cases. The best approach to this situation is to consider the
system of a finite length, L, and match solutions for n < ng and n > ng + 1 with a solution
for na < z < na+ (b—a), which is schematically shown in Fig. 6.3. Eigen frequencies can be
derived then considering limit L — oo. Solutions for the finite system can be constructed
using the transfer matrix approach. The state of the system at the m-th well is described
by a two dimensional vector v, with components E(z,,) and (1/ko)(dE(z,,)/dx):

(6.11) Uy = H z00 = To.
n=1

The 2 x 2 transfer matrix 7,, at the n-th well is

(6.12) ~ ( cos(koay,) + Bsin(koay,) sin(koan))
) " —sin(koa,) + B cos(koa,) cos(koay) )’

where a,, = 41 — 2, and B is defined by Eq. (6.6). The eigen quasi-states for a finite
system, n € (1,N), can be found if one looks for non-trivial solutions when no wave is
incident upon the system. This corresponds to the boundary conditions of the form

t
vy = (—27‘) and vy = (zt)

A resulting dispersion equation for the eigenfrequencies can be expressed in terms of the
elements of the total transfer matrix 7"

(6.13) (T11 + To2) — i (T12 — T21) = 0.

It is clear that for finite samples the solutions of this equation are complex, reflecting the
fact that the modes are not stationary; they have lifetimes which tend to infinity only in
the limit N — oo.

Eq. (6.13) for the a-defect in the infinite MQW system, after some cumbersome but
straightforward algebra, can be presented in the form

_sin(koa) — BA_/2

(6.14) cot(kob) = cos(koa) — 2’

where A_ = [cot(koa) +6/2 - \/ﬁ] sin(kga) is one of the eigenvalues of the transfer matrix,

Eq. (6.12), and D = —1+ f3%2/4+ Bcot(koa). This equation, as well as in the cases of I'- and
Q-defects, has two solutions - above and below Q. These solutions can be approximated as

Wy = w —1)[*F sin(ng/2)
(6.15) WD =y - e (_1) 1 ’
def 0 2 4@ WIé.(_l)[%] cos(n€/2)
0
(6.16) W, = 01 & = W, wu(:B,[T] cose(ig/?) ,
1- e(~1)[% L sin(re/2)
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where £ = b/a, and [...] denotes an integer part. Therefore, for I'y <« Qg and not very large
€, € < (Q/To)Y/? ~ 102, and both solutions are almost periodic functions of b/a with the
period of 1, as shown in Fig. 6.2b. These solutions oscillate between respective boundaries
of the gap (w, or w;) and the exciton frequency Q. At the integer values of &, one of the
frequencies wt(i?f or w((;)f becomes equal to €2, and the other reaches w, or w; depending
upon the parity of £&. When £ crosses an integer value, the solution passing through g
changes continously, while the second one experiences a jump toward the opposite gap
boundary. The observable manifestations of the defect modes (for instance, transmission
resonances as described in the next section) vanish when the defect frequencies approach
the gap boundaries. This jump, therefore, would manifest itself as a disappearance of
the transmission peak near one of the gap boundaries, and a gradual reappearance at the
opposite edge as £ changes through an integer value. It is interesting to note again that the
exciton resonance frequency €y, which formally lies at the center of the gap, behaves as one
of the gap boundaries. This is another manifestation of the fact that the polariton gap in
the Bragg structures is formed by two adjacent gaps with a degenerate boundary at €.

Calculations of the defect frequencies for the b-defect can be done in the framework of
both schemes. The transfer-matrix approach, however, turns out to be less cumbersome.
The dispersion equation for LPM’s in this case takes the form

B B cot(koa)
- sin [ko(b — a)] [_1+2\/ﬁ+ Wi ]

(6.17) +  cos®(koa) + sin® (koa) (g - \/5)2 + sin(2koa) (g - \/5) =0.

This equation can be solved approximately assuming that the splitting of the solution from
the Bragg frequency, g, is much smaller than the width of the gap. Expanding differ-
ent terms of Eq. (6.17) in terms of powers of (w — Q) and keeping the lowest non-zero
contribution, one obtains two different solutions for frequencies of LPM’s:

()" (2 s

The relative splitting of these modes from g is of the order of (T'g/)°/*, and is much
smaller than the relative width of the gap, which is proportional to (T/)'/? in accord
with our initial assumption. Similar to the case of the a-defect, these frequencies change
periodically with £, but unlike the previous case, they both split off the center of the gap,
o, and at integer values of £ merge back to €g. The maximum deviations of the local
frequencies from Qg are of the order of (I'/Q)3/%, they take place for half-integer values of

&

(6.18) Wit = Q

3/4

One can notice that the b-defect involves two adjacent wells, and in the Green’s function
approach one would have to deal with a system of two coupled equations. Accordingly, it
can be expected that there must be four possible local frequencies (two in each half of the
gap), while we found only two of them. The reason for this is that the Bragg condition
makes a pair of frequencies, which are both above or below 2y, nearly degenerate, and
the difference between them is much smaller than the terms we kept in our approximate
solution. This can be understood if one notices that the transfer matrices in Eq. (6.12)
contain factors cos(kb), sin(kb) and cos[k(2a — b)], sin[k(2a — b)] for the first and the second
of the involved wells, respectively. Exactly at the Bragg frequency, ka = =, these factors
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coincide leading to the degeneracy. Since the shift of the actual local frequency from the
Bragg frequency is relatively small, the solutions remain nearly degenerate. The fact that
obtained solutions are symmetrical with respect to the replacement of b with 2a — b is not
surprising and reflects the symmetry of the transfer matrices discussed above.

6.3 Defect LPM’s and transmittance and reflectance
experiments

In this Section we study how the local defect modes obtained above affect the reflection and
transmission spectra of the finite size periodic Bragg MQW’s in the presence of homoge-
neous broadening. Transmission and reflection coefficients can be expressed in terms of the
elements of the total transfer matrix defined by Eq. (6.11) as

2det T
(6.19) 1t (T11 + T22) — i (T2 — To1)
(T11 — T2) + 4 (Tho + To1) 2
6.20 R=|r]> =|- _
( ) | | ‘ (Tll + T22) —1 (T12 - T21)

Without absorption, T' and R in the form of Egs. (6.19) and (6.20) can be shown to add
up to unity. In the denominators of T' and R one can recognize the dispersion relation Eq.
(6.13) that was obtained in the previous section by matching the decaying solutions on both
sides of the defect.

I'- and Q-defects differ from the original QW’s only in the definition of the parameter
B, therefore, they both can be dealt with at the same time. The exact expression for T is
cumbersome, however, if the length of the system is longer than the penetration length over
the frequency region of interest, it can be simplified. In this case the smaller eigenvalue of
the total transfer matrix is proportional to exp(—Na/lo(w)), where Iy is given by Eq. (6.5),
and can be neglected. The expression for the transmission coefficient then can be presented
as [see also Eq. (2.31)]

to

.21 =
(6:21) t (1+¢) +iexp(—ikoNa) edtocosh [(N — 2ng + 1)ka]’

where we introduce the defect parameter € = (Bger — 5) / 2v/D, which is equal to zero when
Baes = B; no is the position of the defect QW, k = 1/ly(w), and & = /(sin(koa)v/'D). For
€ =0, Eq. (6.21) gives the transmission coefficient, o, of the pure system,

2etkL exp (—kL)

(6.22) o= 2= Beot(ka)] /YD

exhibiting an exponential decay characteristic of the evanescent modes from a band gap.
Eq. (6.21) describes the resonance tunneling of the electromagnetic waves through MQW
with the defect. The equation
1+e=0

can be shown to coincide with the dispersion equations for local defect modes of the infinite
structure in the case of Q) and I' defects. Given this fact and the structure of Eq. (6.21), it
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seems natural to assume that the transmission reaches its maximum value at the frequencies
of the local modes. More careful consideration shows, however, that the systems under
consideration behave in a less trivial way, and as we mentioned in Chapter 2, that maxima
of the transmission occur at frequencies shifted from the frequency of LPM’s. This is quite
unusual behavior that distinguishes the systems under consideration from other instances of
resonance tunneling. Moreover, we shall show that, as well as in Chapter 2, the transmission
at the maximum is always equal to unity (in the absence of absorption).

Evaluation of the exact analytical expression for the transmission coefficient, Eq. (6.19),
obtained from the total transfer matrix, showed that the distinctive resonance transmission
occurs only if local modes lie not too close to the boundaries or the center (which is, strictly
speaking, also a degenerate boundary) of the gap. T defects, therefore, can be excluded
from consideration, as well as one of the solutions for the 2-defect. For frequencies close to
the remaining local mode (the solution for the Q-defect given by Eq. (6.8) the expression
for the transmission coefficient Eq. (6.21) can be simplified. Expansion in the vicinity of
the local mode gives

(%)
Wdef — Q
(6.23) T = eof — 1 — -
144 w — wr cosh [(N — 2ng + 1)ka] (1 + iA2) ( wr — N )
! Wdef — WT wWaef —

Parameters A;, Ay and wr are defined by

(Wi — Waef)* (Waey — w-)?

6.24 A = 7
(6.24) ! 4 waer — Q0)%(Waer — wi)(Wu — Waef)

Ay = (wWaey = Qo) v/ (Waef — wi)(Wu — Waey)

6.25 tanh[(N — 2ng + 1)kal,
(6.25) (Wi — Waep)(Waep —w-) . o Dnal
(626)  wr = waey + p &t = Waer) Waes = ) (Waes — Do) g—rNe
. - € )
o vV Waer — wi) (Wu — Waey)

where wi = Qg & (wy, — Qo) /v/2. The resonance transmission occurs when the defect layer
is located in the center of the system N —2ng+1 = 0. In this case the coefficient A5 becomes
zero and Eq. (6.23) can be presented in the following form

_% (w—wr+Q)°
CQ (w-wr)? g

(6.27) T

where () = wr — 21, and the parameter ~q is given by

2
Wdef _QO) e—nNa,

(6.28) ya = ( o

The transmission spectrum described by Eq. (6.27) has a shape known as a Fano resonance
[117], where wr is the resonance frequency, at which the transmission turns to unity, and
parameters vo and @ describe the width and the asymmetry of the resonance respectively.
One can see from Eq. (6.26) that in general the transmission resonance frequency is shifted
with respect to the frequency of the local mode. The shift, though exponentially small
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Figure 6.4: The shape of the transmission maximum for 3 lengths N =
101, 201, 301. For all lengths, the Q-defect is in the center of the system.
Q1 = 1.492491 eV is the exciton frequency of the defect layer. The exciton
resonant frequency Qg is 1.491 eV, the exciton-light coupling constant T'g
is 27 peV as in the InGaAs/GaAs structures studied in Ref. [27], however,
no homogeneous broadening is assumed.

for long systems considered here, is of the same order of magnitude as the width of the
resonance 7o, and is, therefore, significant. These two frequencies, wr and wq.y, coincide
in the special case when wgey = w+. The fact that the transmission is equal to one, in this
particular case, was obtained in Chapter 2.

At w = wr — Q = Q; the transmission equals zero, which is a signature of Fano reso-
nances. Usually the presence of Fano resonances is associated with interaction between a
discrete level and a continuum of states. This is not the case in the situation under consid-
eration. Zero of the transmission in our case is caused by the fact that the Q-defect brings
to the dielectric function of the system a new pole at 7, which describes the interaction
between electromagnetic waves and excitons of the defect well. The penetration length di-
verges at (21, and transmission, therefore, vanishes. The interaction with excitons, at the
same time, leads to the radiative shift of the frequency of the local mode, and hence, the
frequency of the transmission resonance, away from ;. The combination of these two fac-
tors is responsible for the Fano-like shape of the transmission resonance. The actual form of
the Fano spectrum in an ideal system without absorption is determined by the interplay be-
tween the width parameter vo and the asymmetry parameter (). The former exponentially
decreases with an increase of the length of the system, while the latter is length indepen-
dent. However, the pre-exponential factor in vq is of the order of the exciton resonance
frequency, Qq, while @ is of the order of T, i.e. significantly smaller. Therefore, in principle,
there are two possible cases: vq > @ for shorter systems [1 € kNa < log(€Q0/Q)], and
Yo K @ for longer systems. In the first case, the transmission spectrum has a distinctively
Fano-like asymmetrical shape, while in the second limit the spectrum attains the symmet-
rical Lorentzian shape characteristic for Wigner-Breight [118] resonances. Fig. 6.4 shows
the evolution of the shape of the transmission resonance in the absence of absorption from
Fano-like to Wigner-Breight-like behavior with increase of the length of the system. One
can also see from this figure how the position of the transmission maximum moves with an
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increase of the length. An actual possibility to observe the Fano resonance in the considered
situation depends strongly upon the strength of absorption in the system, which must be at
least smaller than (). More detailed discussion of absorption related effects is given below
in the present section.

Calculation of the transmission coefficient for the a-defect can be carried out in a similar
manner. Dropping the exponentially small contribution from the smaller eigenvalue the
transmission matrix can be written in the following form:

to
14¢,) +ie “eNad2gin [2 (b — a)] tg cosh [(N — 2ng)ka)’
[+

(6.29) t=

where

2vD

sin(2b) — sin(2a) — Ay (1 - L) sin(2(b — a))
Eq = .
“ sin(“a)
Similar to the previous defects, 1 + &, = 0 coincides with the dispersion equation for an
infinite system, but the transmission resonance is shifted with respect to the local mode. In
the vicinity of the resonance, Eq. (6.29) can be presented as:

1
(6.30) r= h[(V -2 1+i- Ay
14+ A, w —wr cosh [(N — 2ng)ka] (1 + i - A3)
Wdef — WT

where parameters A; and A, are again given by Eqs. (6.24) and (6.25), respectively. One
only needs to replace N — 2ng + 1 in Eq. (6.25) with N — 2ng, which reflects the new
symmetry of the system. The frequencies of local modes wgy are now given by Egs. (6.15)
and (6.16), and wr is defined by

(Wi = Waep) (Waep — w-)(Waey — wi)(Wu — Waey) -
(wu — Qo)* '

(631).«]’]’ = Wdef + 2(wdef - Qo)

The resonance transmission again occurs when N — 2ng = 0, which requires an even number
of wells in the system. Eq. (6.30) in this case takes the standard Wigner-Breight shape

el

.32 T=—_"'a
(632 o)+ i

with the half-width, v,, given now by

(waer = 00)* (Waey — wi)®? (W — waey)®/? o—rNa
)

(6.33) Yo =2 o)

The frequency wr, where the transmission coefficient takes the maximum value of unity, is
again shifted from the frequency of the defect mode. The two frequencies coincide, however,
when the defect frequency is made equal to w+, which are the same frequencies at which
transmission resonance and the local mode coincide for the Q2-defect. As one can see from
Eq. (6.15), these conditions can be satisfied simultaneously for both defect frequencies of
the a-defect when b ~ (integer + 1/2)a (see Fig. 6.2b). In this case the position of the
transmission resonance becomes independent of the length of the system.

Finally, the b-defect gives an expression for the transmission coefficient very similar to
Eq. (6.21) with the only distinction that € has to be replaced by a different expression, which
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is too cumbersome to be displayed here. The maximum transmission for a given defect is
again achieved when the defect is in the center of the system (N is odd). Expanding the
transmission coefficient near the frequency of the respective local mode, one obtains

1
(6.34) T = . YN 55
1+ — ( Pu 70 ) ‘ wooer + 4 -sinh [(N — 2ng + 1)ka]
4 \waey — Qo) |Waey —wr
with wr now given by
(635) WT = Wdef — Z(wdef — Qo)einNa.

Unlike other types of defects, in this case the transmission resonance is always different
from wqer. When the defect is at the resonance position N — 2ng + 1 = 0, the transmission
spectrum again takes the Wigner-Breight shape with the resonance width determined by
parameter 7y, where v, is given by

(Wdey — QO)2e—KNa

. =2
(6.36) =2

)

In real systems, enhancement of the transmission coefficient is usually limited by homo-
geneous broadening of exciton resonances. Two cases are possible when exciton damping is
taken into account. It can suppress the resonance transmission, and the presence of the local
states can only be observed in not very long systems as a small enhancement of absorption at
the local frequency. This can be called a weak coupling regime for LPM, when incident radi-
ation is resonantly absorbed by local exciton states. The opposite case, when the resonance
transmission persists in the presence of damping, can be called a strong coupling regime.
In this case, there is a coherent coupling between the exciton and the electromagnetic field,
so that the local states can be suitably called local polaritons. Qualitatively we can assess
the effect of absorption on resonances caused by different defects by looking at the widths
of the respective spectra. For all types of defects the width of respective resonances expo-
nentially decreases with the length of the system, consequently, in sufficiently long systems
all resonances dissappear. However, pre-exponential factors make different defects behave
differently at intermediate distances. A simple qualitative estimate would require that the
width of the resonances be smaller than the exciton relaxation parameter. Therefore, the
resonances, where the pre-exponential factor of the width is considerably larger than the
relaxation parameter, can be observed in the systems of intermediate length. On the one
hand, the length must be greater than the localization length of the respective local mode.
On the other hand, it must be small enough for the width of the resonance to remain
larger than the exciton relaxation parameter. The Fano resonance arising in the case of
the Q-defect though, requires special consideration since its vitality is determined by the
asymmetry parameter () rather than by the width parameter vq. Although the latter is
determined by the large pre-exponent (of the order of the exciton resonance frequency ),
the former is of the order of the light-exciton coupling constant I'g, which is much smaller.
The Fano resonance will likely be washed out as soon as the relaxation rate exceeds this
asymmetry parameter (). This circumstance will prevent observation of the Fano resonance
due to Q-defect in InGaAs/GaAs MQW’s, experimentally studied in Ref. [27] which is,
to the best of our knowledge, the only system, where radiative coupling was observed for
systems as long as 100 wells. In this system, the exciton resonance frequency, g, and
the exciton-light coupling parameter, Iy, were respectively equal to Qo = 1.491 eV, and
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Ty = 27 peV, while the exciton relaxation parameter was estimated as v, = 280 peV [27].
This parameter, however, includes both homogeneous and non-homogeneous contributions.
Experiments carried out in Ref. [26] with Bragg GaAs/AlGaAs MQW system provide in-
formation about the magnitude of pure homogeneous broadening in this system. According
to Ref. [26] radiative and non-radiative rates in GaAs/Aly.3Gag7As system consisting of
10 wells are equal respectively to I'g = 67 peV and 7,, = 12.6 pev. One can see that if
the inhomogeneous broadening could be reduced, the conditions for observation of the Fano
resonance would be significantly improved.

The pre-exponent of the resonance width in the case of the a-defect is of the order of
magnitude of the gap width, which is proportional to /I'¢{. It is considerably larger than
Ynr for the InGaAs/GaAs MQW’s and we expect, therefore, that it can be easily observed
in readily available samples of this composition. As far as the b-defect is concerned, it gives
rise to extremely narrow transmission peaks, which are characterized by a pre-exponential
factor of the order of T'y. It, therefore, will be washed out in InGaAs/GaAs MQW'’s, but can
be reproduced in 60 — 80 wells long systems with the parameters similar to GaAs/AlGaAs
MQW?’s studied in Ref. [26] if inhomogeneous broadening could be significantly reduced.

We compliment the qualitative arguments presented above with numerical evaluation of
exact expressions for the transmission, and reflection coefficients, Eqs. (6.19) and (6.20),
using parameters of the mentioned InGaAs/GaAs systems. In order to illustrate what kind
of effects could be observed in samples with reduced inhomogeneous broadening, we also
present results obtained with parameters of GaAs/AlGaAs systems with only homogeneous
relaxation included. To account for non-radiative decay quantitatively, we add an imaginary
part to the denominator of the parameter 3:

4I‘0w

= w? — 02 + 2iypw

Fig. 6.5 shows transmission and reflection coefficients of the Bragg MQW lattice made of
201 quantum wells with the Q-defect in the center with parameters corresponding to the
InGaAs/GaAs system. One can see that absorption washes out the strong asymmetric
pattern of the Fano resonance, but some remains of the resonance are still quite prominent,
and can probably be observed in high quality samples. Fig. 6.6 represents the spectra of 101
well long system with parameters corresponding to GaAs/AlGaAs, but without contribu-
tion from inhomogeneous broadening. One can see a characteristic assymetric profile of the
Fano resonance both in transmission and reflection. There is also a remarkably strong and
narrow absorption line at the resonance frequency with more than 8-fold growth of absorp-
tion at the resonance. This behavior should be contrasted with the previous figure, where
absorption spectrum is rather flat with only insignificant increase at the resonance frequency.
In the case of the b-defect, strong exciton absorption characteristic for the InGaAs/GaAs
structures washes out any resonance features from the spectrum. The resonances, however,
survive if only homogeneous broadening is included. In this case one would have very nar-
row symmetric transmission, reflection and absorption lines (Fig. 6.7) located rather close
to the center of the gap. It is interesting to compare resonance behavior of the b-defect and
the Q-defect in the regime of strong coupling. The latter results in absorption that, though
increased sharply at the resonance, is still rather weak, at the same time the transmission
reaches in this case almost 80%. In the former case, however, the transmission does not grow
that dramatically (up to about 0.4), but absorption increases by two orders of magnitude.
The difference is caused by the different shapes of the resonances: the Fano resonance is
considerably wider and, therefore, results in less dramatic increase in the maximum absorp-
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Figure 6.5: Transmission, reflection and absorption coefficients for the -
type defect. The defect is placed in the center of the MQW with 201
quantum wells. The exciton frequency of the defect well ; is chosen
such that (21 — Q0)/Qo = 1.003. Numerical values of the exciton res-
onant frequency and the exciton-light coupling constant were taken for
InGaAs/GaAs structures studied in Ref. [27]. Solid lines show results
obtained in the absence of absorption, and dashed lines were calculated in
the presence of experimentally observed [27] homogeneous broadening.
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tion.

Fig. 8 shows the transmission and reflection of the Bragg MQW lattice of 200 quantum
wells with the a-defect with £ = b/a = 1.5 and parameters of the InGaAs/GaAs system.
This is the only defect for which the strong coupling regime can be realized for this material.
But since this is the only system, for which the samples with large number of wells were
experimentally grown, we shall discuss the related results in more details. For the a-defect
with the strength £ = 1.5, one has two symmetric with respect to the center resonances.
The peaks are very pronounced in the tranmission, and the contrast in reflection is very
large - about 30%, and can be made even larger if one increases the length of the system.
The spectra shown in Fig. 6.8 can, however, be affected by the presence of the additional
resonance due to 2s excitons. In Ref. [27] it was shown that this resonance causes asymmetry
of the reflection spectrum. We expect that it could have the similar effect upon spectra
presented in Fig. 6.8 causing an assymetry between low- and high- frequency portions of the
spectra. Even if 2s excitons contribute additional resonances to the spectra, they would be
rather weak [27], and could be clearly distinguished from the effects considered in the present
work. As an additional identification tool, one can use the dependence of the defect induced
features upon the defect parameter b/a, while a contribution from the 2s exciton resonance
would not be affected by changes in this parameter. Besides, changing the parameters of
the defect, one can move the transmission resonances closer to the center of the gap and
farther away from the 2s exciton resonance. We can conclude, therefore, that the strong
coupling between local excitons and local photons can be experimentally realized in readily
available samples of InGaAs/GaAs MQW’s. If, however, one could reduce disorder in the
samples, the optical resonances due to a-defect would be even more pronounced with more
dramatic increase in transmission and absorption at the resonance frequencies.

It is interesting to note that the effects of local modes on the resulting absorption of the
incident wave is very weak in the case of weak coupling. Even though there is some small
enhancement of absorption at the resonance frequencies, it is much weaker than absorption
peaks when strong coupling is realized. In other words, local polaritons in the regime of
strong coupling demonstrate resonance behavior in both transmission and absorption at the
same time, while in the weak coupling regime there is only a small effect of the local states
upon all optical spectra of the system. The explanation for this behavior lies in the spatial
distribution of the electromagnetic wave intensity throughout the system. In the absence of
absorption, the electric field at the resonance frequency decays exponentially away from the
defect layer, i.e. there occurs a strong exponential enhancement of the incident field at the
defect layer [119] similar to what we found in Chapter 2. We used self-embedding technique,
adopted for the discrete systems in Appendix, to calculate numerically the electromagnetic
field inside MQW structure. In the absence of absorption we observed the exponential
increase of the field compared to the amplitude of the incident electromagnetic wave E;,

(6.37) |Emaz| = |Ein| - eN/P50,

Non-radiative broadening suppresses not only the resonance transmission but also the
exponential enhancement of the electric field. If the strong coupling regime is not realized,
the intensity of the wave decreases exponentially throughout the sample almost as it would
in the absence of the defect, and is just slightly larger at the resonance frequency than
off-resonance. Therefore, the peaks in absorption in these cases are also only minute. At
the same time, Fig. 6.9 shows that even in the presence of absorption the a-defect in the
InGaAs/GaAs MQW’s, which remains in the regime of strong coupling, demonstrates
more than a three-fold enhancement of |E|? at the location of the defect for the system
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Figure 6.6: Transmission, reflection and absorption coeflicients for the (-
type defect. The defect is placed in the center of the MQW with 101 quan-
tum wells. The exciton frequency of the defect well 2y is chosen such that
(1 —Q0)/Q = 1.003. Numerical values of the exciton resonant frequency
and the exciton-light coupling constant were taken for GaAs/AlGaAs struc-
tures studied in Ref. [26]. All results were obtained in the presence of
experimentally observed [26] homogeneous broadening.
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Figure 6.7: Transmission, reflection and absorption coefficients for the b-
type defect. The defect is placed in the center of the MQW with 101
quantum wells. The defect strength is £ = b/a = 1.5. Numerical values
of the exciton resonant frequency and the exciton-light coupling constant
were taken for GaAs/AlGaAs structures studied in Ref. [26]. All results
were obtained in the presence of experimentally observed [26] homogeneous
broadening.
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Figure 6.8: Transmission, reflection and absorption coeflicients for the a-
type defect. The defect is placed in the center of the MQW with 200
quantum wells. The defect strength is £ = b/a = 1.5. Numerical values
of the exciton resonant frequency and the exciton-light coupling constant
were taken for InGaAs/GaAs structures studied in Ref. [27]. Solid lines
show results obtained in the absence of absorption, and dashed lines were
calculated in the presence of experimentally observed [27] homogeneous
broadening.
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Figure 6.9: The distribution of the electric field at the frequency wy in
the system with the a-defect placed exactly in the middle without (a)
and with (b) experimentally observed [27] homogenous broadening. The
defect strength is £ = b/a = 1.5. Numerical values of the exciton res-
onant frequency and the exciton-light coupling constant were taken for
InGaAs/GaAs structures studied in Ref. [27]. Four curves correspond to
different sizes of the system: 100, 200, 400 and 1000 QW'’s.
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of an optimal length. Fig. 6.10a shows the evolution of the electric field at frequency wr
at the location of the defect as the size of the system grows (for systems with different
sizes the defect is always located in the center of the structure). One can see that the
exponential growth of the field in the absence of absorption (solid curve) changes to a
nonmonotonic behavior when absorption is included (dashed line). For the particular system
under consideration, the field reaches its maximum at about N,,=450, where we see the
crossover from the resonant enhancement regime (N < N,;) to the exponential decay (N >
Np,). Enhancement of the field at the defect explains both transmission and absorption
resonances.

In the absence of the inhomogeneous broadening much stronger enhancement of the field
at the resonance for three types of defects takes place (Fig. 6.10b). We see that for N = 100
the intensity of the electric field at the location of the b-defect is enhanced by the factor of 50.
It correlates with the strong increase of absorption in this case. The difference in absorption
between b- and (2-defects also signals about the difference in the field distribution. The
fact that the Q2-defect leads to the vanishing transmission at the frequency 2y translates, as
computer simulations show, into the vanishing electric field everywhere behind the defect at
this frequency — the defect acts as an almost perfect reflector. The growth of the intensity of
the field at spectrally close frequency g is also limited to only 1.5 of the incident intensity,
which is much smaller than in the case of the b-defect. The strong enhancement of the field
at the location of the b-defect has simple physical explanation. The frequency of the local
states due to the b-defect lies close to the exciton frequency that is tuned such that A/2 = a.
This means that at the frequency of the local mode all QWs but one (the defect one, see
also Fig. 6.1b) lie in the nodes of the electromagnetic wave [22]. Therefore, one could expect
stronger then usual growth of the electric field at the defect. From this considerations, one
should expect the maximum effect to occur when the defect QW is placed in an antinode,
where the electric field is the largest. We already encountered this condition, when we
studied the transmittance in the presence of this type of defect — the most favorable value
of the defect strength was b/a = 0.5 or b/a = 1.5. This peculiar spatial distribution of the
electric field explains the narrow transmission peak and strong enhancement of the electric
field on the defect. This fact has great potential for applications if this type of the defect is
realized experimentally.

6.4 Discussion

Among four types of defect considered in here, three are of special interest. First of them, the
Q-defect, arises when one of the QW is replaced by a well with a different exciton resonance
frequency ;. In this case two new local modes arise within the band-gap of the original
structure, but only one of them, which manifests radiative shift from ¢, can significantly
effect optical spectra of the system. We found that the resonance transmission of radiation
due to the local state results in strongly assymetric Fano-like transmission spectrum. This
transmission resonance turned out to be very sensitive to the presence of non-radiative
broadening, it can only survive if the total broadening (including both homogeneous and
non-homogeneous contributions) does not exceed the strength of radiative coupling between
excitons and light. Using available data we concluded that the Fano resonance could not be
observed in InGaAs/GaAs systems, but would survive if inhomogeneous broadening could
be significantly reduced. Absorption spectrum of such a structure would demonstrate a
narrow line with absorption though increased at resonance, but still relatively weak. The
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Figure 6.10: (a) The dependence of the strength of the electric field at
the position of the a-defect in InGaAs/GaAs structures (from Fig. 6.9) at
wr on the size of the system with (dashed line) and without (solid line)
homogeneous broadening. The other defects did not demonstrate reso-
nance enhancement of the electric field and are not shown here. (b) The
dependence of the strength of the electric field at the position of the a-
, b-, and Q-defects in GaAs/AlGaAs structures at wr on the size of the
system is shown. Numerical values of the exciton resonant frequency and
the exciton-light coupling constant were taken from Ref. [26]. All results
were obtained in the presence of experimentally observed [26] homogeneous
broadening. The defect strengths are £ = b/a = 1.5 for a- and b-defects,
and (1 — Q9)/Q = 0.9963 for the Q-defect. In the presence of the realis-
tic homogeneous broadening, all 3 types of the defects show the resonance
enhancement of the electric field.
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weakness of the absorption correlates with the fact that the intensity of the field at this
defect increases only slightly.

Another defect with interesting properties considered in this Chapter is the b-defect,
which arises when one shifts the position of one of the wells keeping coordinates of all
others intact. This corresponds to changes in the thicknesses of two adjacent barriers. This
defect produces two local modes with frequencies close to the center of the gap. Respective
transmission resonances have regular symmetric Lorentzian shapes but with rather narrow
widths. The last circumstance makes these defects also very vulnerable to the non-radiative
broadening, and they can only survive in systems with the radiative decay rate greater
than the non-radiative one. If, however, this resonance is realized, one can obtain a narrow
absorption line with almost two orders of magnitude increase in absorption at the resonance,
or what is even more important, 50-fold increase in the intensity of the electromagnetic field
at the defect QW (for zero inhomogeneous but realistic homogeneous broadenings).

The most robust of the local polariton modes is produced by the a-defect. In this case
the width of one of the barriers is increased, while all other barriers remain the same.
The defect produced in this way resembles a regular microcavity, but with optically active
mirrors. This fact distinguishes the system considered here from regular cavities with, for
instance, Bragg distributed mirrors. Local states arising in this case give rise to rather wide
resonances in optical spectra, which can survive strong enough non-radiative broadening
and can be observed in readily available InGaAs/GaAs samples.

The results obtained demonstrate that one has a great variety of opportunities to tai-
lor optical properties using defect MQW’s. These systems can have a range of different
applications. For example, the great sensitivity of the defect induced features of optical
spectra to characteristics of the system can be used for characterization of both host QW’s
and defect wells. This sensitivity also leads to possibilities to tune the frequencies of local
modes by means of application of stress, electric or magnetic field, or other stimuli. Another
important feature with great potential for applications is the increase of the field intensity
in the vicinity of the defect well. It can be utilized in order to enhance optical non-linearity
of the system. It is also worth noting that the local modes considered here can be useful as
tunable sources of narrow luminescent lines at the frequencies of the local modes.



Chapter 7

Summary

The problem of local photon states and EM wave tunneling attracts a great deal of attention.
It is necessary, therefore, to distinguish the situation we considered here from other cases
considered in the literature. One of this cases is local photons arising due to macroscopically
sized defects in photonic crystals. The period of the crystal structure of this artificial
materials and the size of the defect are of the order of the electromagnetic wave length.
The defects in this case do not have their own optical activity - they just locally modify
the original structure. The different kind of local photons arises when an optically active
element, such as an atom with dipole active transitions, is considered. In this case, if the
transition frequency falls into the gap region caused by the periodicity in the case of photon
crystals or the polariton effects in the case of regular polar dielectrics, photons emitted by
the atoms cannot propagate, so they form what was called “atom-field bound state.” These
two kind of local states are physically different, and are supposed to play different role in
possible applications.

Local states considered here, LPM’s, do not belong to any of these two groups of phe-
nomena. It differs from defect states in photonic crystals because we deal with microscopic
defect - impurity atom in a regular crystal. But unlike the case of atom-field bound states
our defect does not have its own optical activity. Its dipole moment caused solely by its
mechanical motion. The common sense would say that such a defect cannot effect optical
properties of the host material, and this would be correct if there is no coupling between
electromagnetic waves and internal excitations of the material (phonons, excitons, etc.).
However, if such coupling exist, or, in other words, if the polariton effects are significant,
the situation changes. There is no problem with phonons or excitons being localized due to
a defect atom. Such local phonon or exciton, if dipole active, would emit light, and if the
frequency of the local state belongs to the polariton gap, the emitted light remains localized
around the defect. One could say that the entire phonon or exciton local mode plays a role
of active atoms in the case of atom-field bounded states, but this mode has macroscopic
spatial extension, and hence, macroscopic dipole moment.

By the exact analytical solution of the tunneling of electromagnetic waves through a
chain of noninteracting atoms with a single defect we showed that at the frequency of LPM
the effect of the resonant tunneling occurs. The transmission coefficient in the resonance
is strongly enhanced, and if the defect is placed exactly in the middle of the chain, the
transmission coefficient becomes unity. The electromagnetic field at the defect site is strongly
enhanced at the resonance. Actually, this field grows exponentially with an increase of the
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length of the system. This effect is an electromagnetic analogue of the charge accumulation
in the case of electron tunneling, where it is known to cause interesting nonlinear phenomena
[120, 121, 122]. In our situation a strong local field will also result in nonlinear effects, which
will eventually saturate the exponential growth.

Numerical simulations in 1D chain of dipoles demonstrated also a transition between two
transport regimes: the one associated with resonance tunneling and the other one occurring
when the resonances spatially overlap and the pass band (IPB) of extended states emerges.
The transition occurs when an average distance between the defects becomes equal to the
localization length of the single local state. At the same time the collective localization
length at the peak transmission frequency, characterizing the transport properties of the
entire chain, becomes comparable to the total length of the system.

The method of microcanonical ensemble in conjunction with the expansion in the pa-
rameter l4er/lo < 1, where lg4e¢ is the average distance between the impurities and ly is the
localization radius of a single local polariton state, produces a clear physical description of
the excitations, and shows excellent agreement with the results of numerical simulations. In
the zeroth order of this expansion, we recover the density of states and the dispersion law of
excitations in the system with uniform continuously distributed impurities. Corrections to
this solution describe effects due to local fluctuations in the positions of impurities such as a
finite localization length of the excitations, a renormalization of the spectral boundaries and
the effective mass of the excitations. The parameter l4.¢/ly, therefore can be considered as
a measure of disorder in the system.

In Chapter 5 it was shown that the concept of LPM’s can be used to describe optical
properties of mixed crystals in the frequency region of their restrahlen band. We showed that
this concept allows for a physically transparent explanation of the presence of weak features
in the spectra of so called one-mode crystals, and for one-two mode behavior. The previous
models were able to explain these features only with the use of many fitting parameters. We
demonstrated that under certain conditions new impurity induced LPM’s may arise within
the restrahlen of the host crystals, and studied their dispersion laws and density of states.
Particularly, we found that the group velocity of these excitations is proportional to the
concentration of the impurities and can be thousands of times smaller then the speed of
light in vacuum.

We also studied LPM’s that arise due to deep defect centers with strong electron-phonon
coupling. Electron transitions involving deep levels may result in alteration of local elastic
constants. In this case, substantial reversible transformations of IPB density of states occur,
which include the appearance/disappearance of the polariton impurity band, its shift and /or
the modification of its shape. Such changes can be induced by thermo- and photo-excitation
of the localized electron states or by trapping of injected charge carriers. We showed a
possibility to effectively control the optical properties, in particular, light transmission, of
polar crystals in the far IR region in the vicinity of the polariton bandgap, by modifying the
charge state of the deep center by means of light from the visible or near IR region. We also
developed a simple model, which is applied to the Op center in GaP and discussed further
possible experimental realizations of the effect.

In the last Chapter we studied analytically defect polariton states in Bragg multiple-
quantum-well structures, that are mathematically similar to LPM’s in 1D polar crystals,
and defect induced changes in transmission and reflection spectra.

Defect layers can differ from the host layers in three ways: exciton-light coupling strength,
exciton resonance frequency, and inter-well spacing. We showed that a single defect leads
to two LPM’s in the photonic bandgap. These modes cause peculiarities in reflection and
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transmission spectra. Each type of defect can be reproduced experimentally, and we show
that each of these plays a distinct role in the optical properties of the system. For some
defects, we predict a narrow transmission window in the forbidden gap at the frequency
set by parameters of the defect. We obtained analytical expressions for corresponding lo-
cal frequencies as well as for reflection and transmission coefficients. We showed that the
presence of the defects leads to resonant tunneling of the electromagnetic waves via LPM’s
accompanied by resonant enhancement of the field inside the sample, even when a realistic
absorption is taken into account. On the basis of the obtained results, we made recommen-
dations regarding the experimental observation of the effects studied in readily available
samples.

Besides opportunities for applications, the considered effects are interesting from the
academic point of view. The tunneling resonances associated with the local polaritons have
a number of peculiarities compared to other examples of resonance tunneling phenomena.
For instance, the Fano-like transmission produced by the (2-defect appears here under new
circumstances, specific for this particular system. Another interesting feature of LPM’s
is that the frequencies of transmission resonances are always shifted with respect to the
eigen frequencies of the modes and depends upon the length of the system. Concluding, the
structures considered in the last Chapter demonstrate a number of interesting optical effects
and have a potential for a variety of applications. We hope that this study will stimulate
experimental observation and utilization of the predicted here effects.
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Appendix A

Invariant embedding algorithm
for the transfer-matrix equation

In this Appendix we develop invariant embedding approach to transfer-matrix equations
(2.20,2.21,2.22) of a general form and deduce the recurrent equations on the total transfer
matrix. Consider a typical difference equation of the transfer-matrix method,

(A1) Unt1 = Trty,
with boundary conditions of a general form:
(A2) Gug + Huny = v.

Here u,, is a vector of an appropriate dimension that characterizes the state of the system at
the nth site, T), is a respective transfer-matrix; G and H are matrices of the same dimension
as the transfer-matrix, together a with the vector v they specify boundary conditions at the
left and right boundaries of the system (cites 0 and N respectively). The regular Maxwell
boundary conditions and the fixed ends boundary condition for polarization can be presented
in the form Eq. (A.2) with the following matrices G,H, and vector v

1 =i 0 0 1 i 0 0 2
1 =i 0 0 -1 —i 0 0 2
(AG)= 00 10 |0 H= 00 0 1 A
00 10 00 0 -1 0

These matrices are singular, but one should not worry about this, because we will only need
to invert their sum, which has a non-zero determinant. In accord with the ideas of the
invariant embedding method [40], we consider the dynamic vector, u,, as a function of the
current site n, the length of the system N, and the boundary vector v:

(A.4) up = u(n, N,v) = S(n, N)v

In the last equation we use the linear nature of Eq. (A.1) in order to separate out the
dependence upon the vector v. Substituting Eq. (A.4) into Egs. (A.1) and (A.2) we have
the dynamical equation and boundary conditions for the matrix S :

(A.5) S(n+1,N) =T, x S(n, N),
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(A.6) G x S(0,N)+ H x S(N,N) =1,

where I is a unit matrix. The matrix S(n, N + 1), which describes the system with one
additional scatterer, obviously satisfies the same equation (A.5) as S(n,N). Relying again
upon the linearity of Eq. (A.5) we conclude that S(n,N) and S(n, N + 1) can only differ
by a constant (independent of n) matrix factor A(N).

(A7) S(n,N +1) = S(n,N) x A(N).

In order to find A(N) we first substitute Eq. (A.7) into boundary conditions Eq. (A.6)
which yield

(A.8) A(N) =G x S(O,N +1) + H x S(N, N +1).

Boundary conditions Eq. (A.6) do not change if N is replaced by N + 1, therefore we can
write down that

(A.9) GxSO,N+1)=I-HxSN+1,N+1).
Substituting this expression into Eq. (A.8) we have for the matrix A(N) :
(A.10) AN)=T+Hx[S(N,N+1)-S(N+1,N+1)].

The quantity S(N + 1, N + 1) can be eliminated from this equation by means of Eq. (A.1):
S(N+1,N+1)=Tn S(N,N + 1), and we have for A(N)

(A.11) A(N) =1+ H x [ —T(N)] x S(N,N +1).

Substituting this formula into Eq. (A.7) we obtain the equation that governs the evolution
of the matrix S(n, N) with the change of the parameter N:

(A12)  S(n,N+1)=S8(n,N)+S(n,N)x Hx [I—T(N)] x S(N,N +1).

This equation, however, is not closed because of an unknown matrix S(N, N + 1). This
matrix can be found by setting n = N in Eq. (A.12):

(A.13) S(N,N+1)={I-S(N,N) x H x [ - T(N)]}"'S(N,N).
Introducing notation

(A.14) E(N)={I-S(N,N)x Hx[I -T(N)]}~*

the previous expression can be rewritten in the following compact form:

(A.15) S(N,N +1)=E(N) x S(N,N).

Inserting Eq. (A.15) into Eq. (A.12) we finally obtain:

(A.16) S(n,N+1)=Sn,N)+S(n,N)x Hx[I-T(N)] x E(N) x S(N,N).

This equation still has an unknown quantity S(V, N) which must be determined separately.
We achieve this combining the original transfer matrix equation (A.1) and Eq. (A.15) to
obtain the following;:

(A.17) S(N +1,N +1) = Ty x Z(N) x S(N, N).
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Eq. (A.17) is a nonlinear matrix equation with an initial condition given by
(A.18) (G+ H) x 8(0,0) =1.

Eqs.(A.16)-(A.18) constitute the complete set of embedding equations for the transfer matrix
problem. In order to find the transmission coefficient one has to multiply the matrix S(N, N)
by the boundary vector v; the first component of the resulting vector is equal to texp(ikL),
where t is the complex transmission coefficient. If one is interested in the distribution of
the state vector u(n, N') throughout the entire system, one has to find S(N, N) and then to
solve Eq. (A.16).

The presented algorithm was proved to be extremely stable, it produced reliable results
for transmission as small as 10~17. This stability is due to the operation of inversion involved
in the calculations [see Eq. (A.14)]. This operation prevents elements of the matrix S to
grow uncontrollably in the course of calculations.
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