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Imaging techniques such as functional near-infrared spectroscopy and diffuse optical tomography
(DOT) achieve deep, noninvasive sensing in turbid media; however, they are constrained by the photon
budget, as most of the injected light is lost to scattering before reaching the detector. Wavefront shaping
(WFS) can enhance signal strength via interference at specific locations within scattering media, enhancing
light-matter interactions and potentially extending the penetration depth of these techniques. Interpretation
of the resulting measurements relies on knowing the optical sensitivity—the relationship between changes
in the detected signals and perturbations at a specific location inside the medium; however, conventional
diffusion-based sensitivity models rely on assumptions that become invalid under coherent illumination.
In this work, we develop a microscopic theory for optical sensitivity that captures the inherent interfer-
ence effects that diffusion theory necessarily neglects. We show analytically that, under disorder averaging
with random illumination, the microscopic and diffusive descriptions coincide. Beyond this limit, our
framework identifies WFS strategies that enhance sensitivity. We demonstrate that the input state obtained
through phase conjugation at a given point inside the system leads to the largest enhancement of optical
sensitivity but requires an input wavefront that depends on the target position. In sharp contrast, the max-
imum remission eigenchannel, corresponding to the largest eigenvalue of the monochromatic remission
matrix, leads to a global enhancement of the sensitivity map with a fixed input wavefront. This global
enhancement equals the remission enhancement and preserves the spatial distribution of the sensitivity,
making it compatible with existing DOT reconstruction algorithms. Our results, validated through exten-
sive numerical simulations, establish the theoretical foundation for integrating wavefront control with
diffuse optical imaging, enabling deeper tissue penetration through improved signal strength in biomedical

applications.

DOI: 10.1103/wwbs-pftg

I. INTRODUCTION

In optics, acoustics, seismology, microwave physics,
and other fields, scattered waves serve as versatile non-
invasive probes for a stand-off characterization of com-
plex scattering systems [ 1—4]. While both electromagnetic
waves and sound waves are extensively used in medical
imaging [5], optical methods operating in the near-infrared
regime offer unique advantages for probing biological tis-
sue, combining molecular specificity with deep penetration
[6]. Ballistic or nearly ballistic photon imaging methods
such as optical coherence tomography offer high spatial
resolution but they are limited to essentially superficial
tissue layers [7]. Diffuse optical tomography (DOT) and
functional near-infrared spectroscopy extract information
from multiply scattered light, enabling interrogation of
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much larger depths [8—12] aided by reduced attenuation in
the near-infrared spectral-transparency window in biolog-
ical materials [13]. These techniques operate in remission
geometry, which involves injecting near-infrared light into
tissue at a source position, while collecting the multi-
ply scattered photons that emerge at a detector placed at
a different location on the tissue surface. The detected
light signals from multiple source-detector pairs are then
used to reconstruct the spatial distribution of tissue opti-
cal properties through inverse-problem techniques [14,15].
Therefore, the success of DOT-based approaches hinges
on two key principles [10]: (1) the ability to predict how
local changes in tissue properties modulate the detected
signal (sensitivity) [16], and (2) the ability to recon-
struct the photon propagation paths connecting sources to
detectors (inverse problem). The omnidirectional nature
of diffuse light propagation leads to a decrease of signal
strength with both depth and source-detector separation
[9], whereas the maximum input intensity is limited by
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FIG. 1. Schematic of scattering approach. (a) Scattering
matrix element Sy, relates the field amplitudes of the incident
mode a (solid line arrows) and the outgoing mode » (dashed
arrows). (b) Experimentally, one has access to a finite number
of spatial channels (blue arrows), described by the matrix Rp,,
which is a subset of S. (¢) The addition of a small perturbation
to the dielectric properties inside the system results in a change
3Rpa(rp), which depends on its location ry.

tissue damage thresholds [17]. A fixed photon budget
ultimately constrains the maximum depth accessible by
DOT-based approaches [18,19].

Wavefront shaping (WFS) techniques [20-24] have
emerged as a promising avenue for enhancing the sig-
nal strength at depth [25,26]. This is expected to enhance
light-matter interaction and hence increase modulation of
the remitted signal; however, the intensity patterns created
inside the scattering medium can no longer be adequately
described by diffusion theory [27-31], nor can the rela-
tionship between signal modulation and the underlying
perturbation be justified [32] using traditional diffusion-
based approaches [10]. These observations put into ques-
tion the applicability of diffusion-based interpretation of
the sensitivity map when used in conjunction with WFS
input.

To formally describe wave transport through complex
media, it is useful to adopt a scattering framework. Ele-
ment Sp, of a scattering matrix describes the amplitude
of the wave scattered by the system into spatial channel
b (e.g., the wave-vector direction), upon a coherent exci-
tation via channel a [33,34] [see Fig. 1(a)]. Commonly,
the experimental setup for interrogation of the scattering
system involves detection of a subset of all incoming and
outgoing waves [22], Ry, [Fig. 1(b)]. Sensitivity analysis
[10,14,15,35] is a powerful tool that is used to characterize
the variations in local properties of complex medium, e.g.,
in the real or imaginary part of the dielectric function de at
a spatial position ry through detection of changes § Rp, (ro)
in scattered amplitudes [Fig. 1(c)].

An important insight into the problem has been obtained
recently in Ref. [32], where wavefront control technique
was applied to the continuous-wave (CW) matrix R
defined specifically in the remission geometry—a con-
figuration involving a semi-infinite medium where both
source and detector lie on the same side of the sample.
In the equation Eyy, = R E;,, the matrix operator relates
the incident field E;, and remitted field Ey,, which can

be decomposed into N; and N, spatial channels, e.g.,
flux-carrying modes of the optical fibers in DOT. As
could be expected, the numerical and experimental results
indeed demonstrated a significant (one order of magni-
tude) enhancement of the remitted signal by exciting the
highest remission eigenchannel, whose input wavefront is
given by the eigenvector of RT(R, corresponding to its
largest eigenvalue. Importantly, a new microscopic formu-
lation based on the scalar wave equation was proposed
to obtain the sensitivity map [32]. Remarkably, it was
found that the spatial distribution of the sensitivity map
for the maximum remission eigenchannel (MRE) remained
the same as that for random input, while the magnitude
of the sensitivity enhancement was nearly equal to the
magnitude of the remission enhancement. These findings
suggest the possibility of extending the diffusion-based
DOT treatments to include WFS excitation. Indeed, if
the sensitivity magnitude could be computed theoretically,
while the inverse-problem solution could use the same
sensitivity map found in the diffusion model, coherent
enhancement of the remitted signal would immediately
translate into deeper noninvasive sensing and imaging in
biological media.

While the results in our previous work [32] provided an
important clue into how optical sensitivity is affected by
coherent control, a comprehensive study is required to for-
mulate a new approach and validate its applicability. First,
the microscopic theory must be rigorously tested against
the widely used diffusion-based approach; for example, for
random input excitation, the field-based approach should
reduce to diffusion theory. Second, the dependence of the
sensitivity on key system parameters such as the transport
mean free path and source-detector geometry needs sys-
tematic verification. It also remains unclear what the opti-
mal strategy is for enhancing optical sensitivity within the
context of wavefront shaping. Furthermore, since coherent
WES can manipulate the amplitude, phase, and polar-
ization of incident waves, extension of the scalar wave
theory to incorporate the full vectorial nature of the elec-
tromagnetic waves is essential for a complete theoretical
description of optical sensitivity.

In this work, we present a comprehensive study of CW
optical sensitivity in complex media, focusing on the role
of wavefront shaping in enhancing detection capabilities.
In Sec. II, we derive analytical expressions for sensi-
tivity using a microscopic approach that remains valid
even when coherent wavefront shaping is employed. We
establish a connection between optical sensitivity and
phase conjugation [36,37], demonstrating how tailored
input wavefronts can maximize the system’s response to
perturbations. In Sec. III, we perform numerical simu-
lations to validate our theoretical predictions, comparing
the sensitivity enhancements achieved through different
excitation schemes. We further investigate how sensitiv-
ity enhancement scales with system parameters such as the
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transport mean free path and the source-detector geometry.
In Sec. IV, we extend our analysis to vector electromag-
netic waves and demonstrate that the key results remain
consistent with those derived for scalar waves. Our find-
ings provide a theoretical foundation for understanding
sensitivity in coherent wave transport, offer insights into
different wavefront shaping strategies, and pave the way
for next-generation diffuse optical imaging techniques.

II. OPTICAL SENSITIVITY: ANALYTICAL
RESULTS FOR SCALAR WAVES

In this section, we consider scalar waves and derive ana-
Iytical expressions for the CW optical sensitivity using
a unified approach requiring minimal assumptions. In
Sec. I A, we present a derivation of sensitivity that applies
to arbitrary system geometries and does not rely on the
diffusion approximation. In Sec. IIB, we then establish
the connection between optical sensitivity and phase con-
jugation, describing the construction of such a wave-
front and demonstrating the enhancement of sensitivity. In
Sec. 11 C, we develop the disorder-averaged intensity sen-
sitivity model, which requires the additional assumptions
that the input wavefront is uncorrelated with the disordered
system and that wave transport is diffusive. We prove ana-
lytically in Sec. II D that under random excitation, these
two models lead to identical results in diffusive media. We
conclude in Sec. Il E by introducing normalized sensitivity
and discuss its advantages in sensitivity analyses.

A. Microscopic approach to optical sensitivity

We consider a CW monochromatic scalar field Ey(r) in
a medium with dielectric function €(r), representing one
realization of disorder. The unperturbed field satisfies the
wave equation

[V2 4+ Ke(r)] Eo(r) =0, (1)

where k = 27/ is the wave number in vacuum and € (r)
is a spatially varying dielectric function of the medium.
A small perturbation de(r) near ry modifies the wave
equation, resulting in a new solution E£(r). The change in
the field 8E(r) = E(r) — Ep(r) can be written using the
Lippmann-Schwinger equation:

SE(r) = / dr’' Gy(r,¥) V() E(Y). )

Here, we adopted the language of the scattering theory,
where Gy = (k* — Hy)~! is the (retarded) Green’s func-
tion of the original wave equation, with Hy = —V? —
k*[e(r) — 1] and V(r) = —k*8e(r). In the Born approxi-
mation, and assuming a pointlike perturbation at ry, we set

de(r) = 8e §V3(r — rp), yielding
SE(r) =~ U Go(r, o) Eo(ro), 3)

where ) = —k28€ 8V is the strength of the perturbation
and 8V represents an effective volume associated with the
perturbation.

The above expression, given in the position repre-
sentation E(r) = (r|E), also holds in any representation
E(Y) = (¢¥|E). This allows us to cast the problem in the
language of optical tomography. To this end, we evaluate
the variation of the flux F received by a detector [Fig. 1(c)]
in the basis of flux-normalized output modes {|v3)},

Ny Ny
SF =Y " [(WslE) > = [(WslEo)|> = Y 2Re [8E, ],
b=1 b=1

“4)

where up = (Yp|Eo) in the output field measured in the
channel b and

(%
SEp = % ¢ (ro) Eo(ro). Q)

Here, ¢ (ro) = 2i{5|Go|ro) represents the field in channel
b when excited by a pointlike source at ry [38]. By reci-
procity, it is also the field at ryp when channel b is excited
from the output port. As flux-normalized states ¥, (r) are
related to intensity-normalized states x,(r) according to
Yp(r) = Xb(r)/\/kT, where k7 is the longitudinal com-
ponent of the momentum of y,(r), we can also write
P (ro) = 2i\/K; (ro| Gol xp) = 2ik;,(ro|Gols). Substituting
Eq. (5) into Eq. (4) gives

8F = Re [0 ¢(xo) Eo(ro) |, (6)

where we introduced the notation

N,

¢(ro) = ) uj; y(ro), (7

b=1

and summation over b runs over N, output channels.

To complete the derivation, we use Eq. (6) and formally
define the optical sensitivity to a local absorber with 6e =
i€” as

dF(ro)

S(ro) = —== =~k SV Re[p(r)Eo(ro)].  (8)

This expression [32] serves as the foundation for the
analysis that follows.

It is illuminating to express the input state used to excite
Ey(r) in terms of N flux-normalized input channels {|v,)}
as |1/fi“> = Zi\ll Vg |¥,). Here, v, are amplitudes of each
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mode satisfying the constraint Ziv;l |v,|?> = Ny. There-

fore, Ey(ry) = Zﬁll Va4 (rg), similar to the output states
introduced in Eq. (7). We find

S(ro) = —k8V Y Re [¢p(ro)Rpypa(ro)viva] . (9)

bad

where we took advantage of the relationship u, =
Zi\l 1 Rpav,. We note that Eqgs. (8) and (9) are, in fact,
equivalent.

We end this section with several comments. First,
Egs. (8) and (9) are obtained in the Born approximation
(weak perturbation), which means that they become exact
in the limit k% 8Ve” <« 1, where @ = 2,3 is the dimen-
sionality of the system. Second, the sensitivity in Egs. (8)
and (9) is expressed in terms of complex-valued fields and
coefficients {¢(ro), Eo(ro)} or {pa(ro), ds(ro), va, Rpal,
respectively, all computed (or, in the case of v,, specified)
for the same realization of disorder. To compute the statis-
tically averaged sensitivity from Egs. (8) and (9), one must
ensemble-average the full product of fields in the sensitiv-
ity expression rather than averaging the fields themselves.
This distinction preserves interference effects that con-
tribute to coherent transport, even after disorder averaging.
Lastly, we note that &(rg) has an implicit dependence
on the location of the perturbation center that makes it
a sensitivity map: external measurement of the flux con-
tains information about the internal location ry of the
perturbation. It is this key feature that enables noninvasive
approaches to tomographic reconstruction of the optical
properties of the medium.

B. Phase conjugation and optical sensitivity

Equation (9) shows that the ability to enhance opti-
cal sensitivity at a target position ry within a scattering
medium hinges on a judicial choice of the input wavefront
defined by the coefficients v,. Among various wavefront-
shaping strategies, phase conjugation (PC) appears as a
particularly intuitive and effective approach [23,36,39—41].
Indeed, in a complex medium, a point source at ry gen-
erates a wavefront that propagates outward, undergoing
multiple scattering events. The phase-conjugated input,
constructed by reversing the outgoing wavefront detected
at the position of our extended source, excites a field that
naturally retraces these scattering paths in a time-reversed
fashion. This is a consequence of the time-reversal symme-
try [37,42] in CW propagation. Refocusing energy back at
ro is not perfect because time reversal of partial outgoing
waves is incomplete. It is expected that this constructive
interference should maximize the local field amplitude
for a given amount of finite control, thereby amplifying
the response to small perturbations in the optical prop-
erties at rp—a concept that has been formalized using

the generalized Wigner-Smith operator and related opti-
mal input states [43—46]. The modal coefficients for the
PC wavefront are given, in our notation, by

Nl :| 1/2

PC ¥

. = ¢, (xo), (10)
|:Iin (ro)

where iy (rg) = Z]av;l l¢a(ro)|>, and the N,’* factor
ensures that the total input flux remains equal to Ny, fol-
lowing the convention adopted earlier. By substituting
Eq. (10) into Eq. (9), the sensitivity with PC input becomes

SPC(ro) = —Nik*8V ) Re [ (ro)Rp,da(ro)] . (11)

ba

To put this result into perspective, we obtain an expression
for sensitivity under two alternative excitation schemes.
First, we consider a random combination of input chan-
nels, such that v v, = §,,. Here, the averaging is per-
formed only over different combinations of random inputs
in a particular realization of the system—i.e., no disorder
ensemble average is assumed. In this case Eq. (9) yields

S®(rg) = —k8V ) Re [y (ro) R, ba(ro)]

ba
= 8"(ro)/N1. (12)

Here, the superscript RI indicates a random input. Remark-
ably, we observe that excitation with PC leads to enhance-
ment of sensitivity by a factor of Ny compared to random
input. While such an enhancement might be expected, it
is, in fact, a highly nontrivial result. Phase conjugation
is well known to enhance the intensity at the target loca-
tion by such a factor due to constructive interference.
In the case of optical sensitivity, however, the quantity
of interest involves a product of two distinct fields [see
Egs. (8) and (9)]: one propagating from the injection site
and the other from the detection port. An enhancement of
the field originating from the source is expected, given
that phase conjugation directly optimizes energy deliv-
ery to ro. Surprisingly, the second field, originating from
the detection site, is also enhanced by the same factor.
This outcome is not obvious, as the back-propagating field
is not directly controlled by the phase-conjugated input.
Instead, its enhancement arises due to the intrinsic reci-
procity of wave propagation in complex media, which
ensures that the time-reversed wavefront optimally recon-
structs the field at the target location, thereby reinforcing
the response to perturbations and leading to the obtained
sensitivity enhancement.

In our previous work [32], we demonstrated enhance-
ment of sensitivity when the system was excited by singu-
lar vectors of the remission matrix (R. In this scheme, we
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use the singular value decomposition of (R,

min(Ny,Np)

Roa =Y Usaps* Vg (13)

a=1

and select a specific « = 1—the MRE. We chose v, =
N, 11/ 2 V,1—the first column of the V,, matrix, which corre-
sponds to the maximum remission eigenvalue p;. Here, by
adding the factor &, 11 /2 we ensure that the total flux used to
excite the system is equal to NV, i.e., Zi\ll [va|> = Ny, as
in the previous two schemes [Egs. (11) and (12)]. Substi-
tuting this input vector into Eq. (9), and taking advantage
of the unitarity of the U and V matrices in Eq. (13), we
obtain

CS)MRE(I,O)
= ~N8V Y Re [gnr0) (Varn!* U3y ) dulro) |
ab (14)

Comparing the above to Eqs. (11) and (13), we observe
that excitation of the remission eigenchannel amounts to

the replacement Ry, = ), Ubo[,ool/2 Ve, = (Valpll/zUTb>

in the PC expression for sensitivity. In other words, in
selecting MRE, we are singling out the largest singular
value contribution to the remission matrix and omitting the
rest.

Several remarks are in order. First, we would like to
stress that similar to Eq. (9), all of Egs. (11), (12), and (14)
hold in the single realization of the scattering system,; i.e.,
no ensemble averaging is assumed.

Second, our result above suggests that

ISR (re)| < |SMRE(rp)| < |S7C(ro)], (15)

with the overline denoting statistical averaging. Hence, the
phase-conjugation approach indeed leads to the highest
sensitivity for a given point ro. While the strict order-
ing |SR(rg)| < [SMRE(rg)| < |SPC(rg)| probably holds in
a typical sense, it is important to clarify that the rela-
tion between MRE and RI, and between MRE and PC,
might not be guaranteed for a single realization of disorder.
Unlike PC excitation, which deterministically enhances
sensitivity by a factor of N; above the RI result, the MRE
scheme involves interference effects determined by the
eigenvectors of the remission matrix. As a result, SMRE(r()
is not guaranteed to be negatively defined and can exhibit
significant fluctuations due to disorder-specific interfer-
ence effects; however, on average, |SMRE(rg)| exceeds
|SRI(ro)| by a factor approximately equal to the remission
enhancement, as shown in Ref. [32] and later in this work.

Third, the enhancement of sensitivity ng,c(ro) =
SPC(rg) /SR (ry) in the phase-conjugation scheme (V)

exceeds that for the Ilargest remission eigenchan-
nel n¥RE(rg) = SMRE(r()/SRl(ry) (see for example
Ref. [32]). As can be seen from Eq. (10), to achieve the
largest sensitivity, the phase-conjugation scheme requires
an input vector uniquely tailored to the specific obser-
vation point ry. In contrast, remission eigenchannels are
computed based on Rp,, which is a global quantity, inde-
pendent of ry. As such, the largest remission eigenchannels
lead to a global enhancement of sensitivity with a position-
independent input vector [32] (see Sec. I1 D). The ability to
enhance sensitivity globally in a complex scattering sys-
tem with a fixed input wavefront is highly nontrivial. This
effect is captured by the filtered random matrix theory (see
Appendix G) in diffusive systems, which we turn to next.

C. Diffusion approximation for optical sensitivity

Having established a general formulation of optical
sensitivity in arbitrary geometry, we now examine its
implications in the diffusive regime, where light trans-
port follows a statistical description. In this section, we
derive the corresponding sensitivity expressions within
diffusion theory, providing a benchmark for comparison
with the more general microscopic approach (see for exam-
ple Ref. [10]). Seminal contributions to sensitivity analysis
in the diffusive regime have been made by J. Schotland and
collaborators, particularly in the context of inverse prob-
lems and optical tomography [14,15,35,47,48]. Unlike in
Sec. IT A, the starting point of this consideration is the
diffusion equation and not the wave equation. We begin
by discussing the assumptions enabling such an approach.
First, the diffusion equation describes disorder-averaged
quantities such as intensity 7(r) denoted with an overline.
Second, such a description is applicable at scales much
larger than the transport mean free path £. Therefore, it is
assumed here that relevant length scales, such as the sys-
tem size and the separation distance between the source
and the detector, are much larger than ¢ [49].

Let us first consider the case without any perturbation.
The input state is expressed in terms of the N; flux-
normalized input channels {|v,)} and is assumed to be
uncorrelated with the disordered system. The mean flux in
the output port then reads

F =23 Rl Jual. (16)
a,b

The elements of the remission matrix (R, describing scat-
tering from channel a to channel b [Fig. 1(c)] can be
expressed using the Fisher-Lee relation [38]

Rpa = 2i\/IEK (xp1 Gol Xa)- (17)

The flux in Eq. (16) contains the disorder-averaged prod-
uct of two field Green’s functions Gjy. It can be evaluated
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within the diffusion framework, which amounts to keeping
only the so-called ladder diagrams in the Bethe-Salpeter
equation [33,49,50]. We obtain

2
|Rpal™ =

2

b

(18)

WEK f dry dry |(elGole)|* Ty | (01[Golxa)

where the kernel I'(r,,r;) obeys the stationary diffusion
equation

DV (1, 1)) = %a(m —r). (19)

Here, D = ¢vg /D is the diffusion constant, in which vg is
the energy velocity, T = £/vg is the scattering time, and
y is the scattering strength. The latter can be expressed in
terms of ¢ and the mean density of states DOS(w) as

22

7cl DOS(w)’ (20)

)/:

The presence of the perturbation at ry results in a modi-
fication of the mean, disorder-averaged, flux at the output
as

8| Rpal® =

— 2 — 2
4K [ i drs |GofGoles) [ T e2.11) |t Gol )
(21)
The change in the diffusive kernel 6I"(r,, r;) can be found
using the perturbative approach within the diffusion frame-

work described in Appendix A. With the help of Eq. (19),
we obtain

~ T
8T (rp,1y) = V' ; ['(rp,rg) ['(rg, 1), (22)

where 0! = —vzke”8V is the strength of the perturbation.
Substituting Eq. (22) into Eq. (21), we obtain the change
in flux in the form

— ~ T
8| Rpa* =~ 4v1;Jb<ro)Ja(ro), (23)

where we introduced a diffusive flux

Ja(ro) = kf,/dl‘l [(ro, 1) |(l‘1|50|)(a)|2 (24)

This quantity is proportional to the mean intensity 7,(r() =

[pa(ro)” = |21/ (ol Golxa)|*

excited at ry by the input

channel |y,). Unlike G, the averaged modulus square of
G is described by diffusion and can be computed as

Tu(ro) =4k / drdrs |(ro[Golea) | T(ras 1) | (11 [Golxa) |
|2

— 2 —
:4k;/drz|<ro|Go|rz>| fdrlmo,rl) |(r11Gol xa)

4
= 2. (25)
14

Here, we used the fact that fdr2|(r0|50|r2)}2=

—(/k) Im(ry|Go|ro) and, from the definition of the mean
density of states, Im(ry|Golro) = —mcDOS(w)/2k. Com-
bining now Egs. (16), (23), and (25), we find the variation
of the mean flux due to the perturbation

— ~ 'Cy —_ —
8 Fgigr = O T Iin(ro) Lou(xo), (26)

in terms of the intensities at position ry excited from input
and output (i.e., detector) ports

Ny

Tin(ro) = Y _ |val* Ta(xo),
a=1
Ny

Tout(r()) = Z 7b(r())-

b=1

27

We note that the coefficients |v,|> — 1 if we can assume

random and statistically equivalent excitation. Therefore,

we will refer to these intensities as 7&1(1‘0), TORit(ro) below,
where RI again indicates random input. .

To complete the derivation of the sensitivity &g =
dFg/de” in the diffusive approximation, we substitute
all prefactors into Eq. (26) and use the density of states
DOS?®(w) = k/2c or DOS*®(w) = k?/27%c. We then
obtain the main result of this section:

_ D2 _ -

Santro) = —KsV (T) " Tn@o o). (28)
The coefficient in front of this expression depends on the
dimensionality 0 = 2, 3. This expression lends itself to an
insightful physical interpretation. Indeed, I g(ro) is pro-
portional to the probability of a photon injected at the
input port reaching the localized perturbation at ry. Like-
wise, TORit(ro) is proportional to the probability of a photon
that passes through ry reaching the output. Thus, Eq. (28)
is, up to a prefactor, the conditional probability that a
photon injected at the input will reach the output after hav-
ing visited ry. For a half-space geometry, the spatial map
described by the above expression is an arch, or “banana”
[10,16,47,51,52], as it is commonly called.
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We now turn to a comparison between the expression
for optical sensitivity derived within the diffusion approxi-
mation [Eq. (28)] and the microscopic expression [Eq. (8)]
obtained in Sec. II A. The microscopic formulation applies
to a single realization of disorder and does not rely on
statistical averaging or assumptions about large (relative
to the transport mean free path) system sizes or source-
detector separations. This generality allows it to capture
both sample-specific and ensemble-averaged behavior for
an arbitrary input state, whereas the diffusive result pro-
vides only the disorder-averaged sensitivity for a random
input state. Therefore, we should expect that the macro-
scopic and diffusive descriptions both yield the same result
when Eq. (8) is applied to a diffusive system and appropri-
ately averaged. In the next subsection, we present a formal
proof of this equivalence.

J

D. Microscopic sensitivity in the diffusive limit

In Sec. IT A, we obtained the microscopic expression (9)
for the optical sensitivity. For systems exhibiting diffuse
wave transport, this formula should be equivalent, in the
statistical sense, to the diffuse sensitivity given in Eq. (28).
To verify this, we need to take the proper limit and account
for the underlying assumptions. These include: (1) the
characteristic size parameters of the system are sufficiently
larger than the transport mean free path, justifying a diffu-
sive treatment; (2) statistical averaging over an ensemble
of disorder realizations; and (3) random excitation of the
incident modes.

As the first step, we express the sensitivity in Eq. (9) in
terms of the field Green’s function. Using the Fisher-Lee
relation (17), we obtain

S(ro) = =8PV Y v} varks [k, Tm [ (6] Golxo) (0| Gol xar) (X5 Golxa)*] (29)

bad

Likewise, the sensitivity in the diffusion approximation, Eq. (28), can be expressed in terms of the field Green’s functions

as

— T\D-2
San(ro) = =168V () D [walkik: 101Golro) P (Kol Golxa) ™ (30)
ba

Therefore, we seek a connection between Eqs. (29) and (30), provided we take advantage of the random-excitation
assumption (3) and statistical averaging (2). The former gives v¥v, = 8,,, whereas the latter leads to the condition

Im [(x5|Golro) {rolGol xa) {Xs|Gol¥a)*] = 2 (

for the mean of Eq. (29) to be equal to Eq. (30). In
Appendix B, we use a diagrammatic approach to prove
that the equality (31) indeed holds. This result can be qual-
itatively understood by considering the scattering paths
that contribute the most after disorder averaging. These
dominant scattering paths consist of diffusive trajectories,
as shown in Fig. 2. Consequently, we have established
that under random illumination, the statistically averaged
microscopic sensitivity, Eq. (8), and diffusive intensity
sensitivity, Eq. (28), yield identical results.

We note that when the illumination is not random but
remains independent of the disorder, this equivalence is
still often preserved. For instance, it holds for a simple
plane-wave input (v, = 844,), since in this case Vv, =
84, trivially. It also holds for input states with a large num-
ber of nonzero coefficients v, that are uncorrelated with
the medium, because the cross terms (a # @) in Eq. (29)
acquire random phase-dependent weights that are washed
out upon summation.

T\ D2

=) 1061Golro) P 1(rolGolxa) 31)

This derivation above also exposes the mechanism by
which the relationship between Egs. (8) and (28) can be
broken. Indeed, choosing the v, coefficients dependent
on the specific realization of disorder would make them
dependent on the Green’s function matrix elements in
Eq. (29), thereby preventing the factorization of disorder
averages and rendering Eq. (28) no longer applicable. This
is precisely the effect of coherent excitation—choosing
an incident wavefront uniquely tailored to the specific
disorder realization, as explored in Secs. Il and IV B.

E. From extensive to intensive optical sensitivity

Earlier in this section, we derived two expressions for
computing sensitivity: a microscopic formulation, Eq. (8),
and its diffusive approximation, Eq. (28). These expres-
sions allow us to identify several key properties of sen-
sitivity, which, by definition, is given by the ratio of
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FIG. 2. Scattering representation of the identity (31). Solid
and dashed lines represent the propagating field and its complex
conjugate, while open circles represent scatterers. Shaded tubes
represent diffusive paths where both fields visit the same scatter-
ers. A more formal representation of the lower diagram is given
in Appendix B.

flux variation to the magnitude of the perturbation in the
imaginary part of the dielectric function.

Volume of perturbation: The spatial dependence of the
absorbing center has been modeled by a delta function
[see Eq. (3)]. This assumption implies that the spatial
extent of the perturbation §7/? is much smaller than
the characteristic spatial variation scale of the field. In
the microscopic formulation, Eq. (8), which applies to a
single realization of disorder, the relevant length scale is
the optical wavelength A = 27 /k since interference effects
govern the field structure. Although the structural correla-
tion length (e.g., cell size) may be larger than A, it does
not limit the field resolution, and a conservative validity
condition is still §7"/? « A. In contrast, after statistical
averaging—as in the diffusive expression, Eq. (28)—both
the wavelength and correlation length become irrelevant.
The spatial variations in the averaged fields are smoothed
over the transport mean free path £, which sets the smallest
relevant scale. Thus, in the diffusive regime, the delta-
function approximation remains valid provided that §V <«
£? [see Eq. (AS) in Appendix A]. Therefore, weakness of
perturbation amounts to the condition k” 8V 8e < 1 (c.f.
Egs. (3) and (A5)), making both Eq. (8) and its diffu-
sive approximation Eq. (28) trivially dependent on §V. As
such, sensitivity becomes an extensive quantity—it scales
with the size of the perturbation. In contrast, an intensive
definition would normalize away this dependence making
it “density”-like. Therefore, we propose normalization by
the dimensionless quantity k” 8V (see below).

Number of input spatial channels: In Secs. [l A and 11 C,
we adopted such a normalization that, on average, a unit of
flux is incident onto each of N, degrees of freedom in the
input port. This is a “constant intensity”” normalization—it

leads to the total flux being proportional to the area of the
injection site and, thus, to N, itself. In other words, the
sensitivity is trivially dependent on N}, again, making it an
extensive property and suggesting a natural normalization
by Njy.

Number of output spatial channels: The change in flux
collected at the output should similarly increase with the
collection area, or &V,, the number of degrees of freedom
at the output port. In the diffusive approximation, Eq. (28),
the proportionality should be nearly linear, provided that
the size of the port is much smaller than the transport mean
free path. Similar to the two other dependencies discussed
above, normalization by N, appears natural.

Based on the arguments above, we introduce a normal-
ized optical sensitivity defined as

S8(ro)

—_ 32
k? 8V N1 N, (32)

a(rp) =

Such a normalization in both Eqs. (8) and (28) defines
the sensitivity density. While this removes the depen-
dence on the perturbation volume, it does not eliminate the
dependence on other system parameters such as Nj, N,
or geometry (c.f. Sec. III D). Nevertheless, the sensitivity
density is particularly convenient when comparing differ-
ent models or simulations—the task we undertake in the
next section.

III. NUMERICAL ANALYSIS: SCALAR WAVES

In the previous section, we introduced the microscopic
expression for optical sensitivity Eq. (8) and its diffusion
approximation Eq. (28). Instead of sequential raster scan-
ning the location of the absorbing center [Fig. 3(a)] to
map out the sensitivity, both formulations have the major
advantage of being “parallel.” Indeed, Eq. (8) expresses
the entire sensitivity map in terms of two fields £y (r) and
¢ (r), requiring only two computations for each disorder
configuration [Fig. 3(b)] followed by ensemble averaging.
Equation (28), on the other hand, relates the sensitivity
map to the ensemble-averaged intensity distributions for
input and output ports. In Sec. II D, we showed that both
formulations should agree in a diffusive system with ran-
dom input excitation. In Sec. III B, we aim to verify that
both Egs. (8) and (28) indeed give the same result in
this limit in numerical simulation of scalar waves in the
two-dimensional (2D) semi-infinite medium introduced in
Sec. III A. This is not a trivial test because the quantities
and the averaging procedure in the two expressions are
vastly different. Next, in Sec. [IIC we show that under
excitation with a disorder-specific wavefront, the maxi-
mum remission eigenchannel, the diffusive approximation
fails to describe the optical sensitivity computed using
our microscopically exact Eq. (8). We also demonstrate
that the sensitivity for the remission eigenchannel can be
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FIG. 3. Two computational approaches for evaluating optical

sensitivity. (a) Method I: sensitivity is inferred from changes in
remission coefficients (R, due to the introduction of a localized
absorber at position ry [see first part of Eq. (8)]. This method
requires sequential simulations for each ro and thus involves
raster scanning. (b) Method II: sensitivity is computed using the
product of two field distributions in the second part of Eq. (8).
This approach is parallel and requires only two simulations to
obtain the full spatial sensitivity map across all ry.

predicted by the filtered random matrix theory summa-
rized in Appendix G. In Sec. III D we discuss relationship
between enhancement of sensitivity and the remission
enhancement.

A. Numerical model

We carry out our numerical simulations in a geometry
chosen to represent the experimental sample from our pre-
vious work [32]. The system is a 2D disordered medium
occupying a half-space, as shown in Fig. 3. This 2D config-
uration is not arbitrary: it models a planar photonic struc-
ture in the experiment, which enables nearly noninvasive
optical access to the internal field distribution [53], mak-
ing it ideally suited to studying coherent wave transport
inside a multiple scattering medium. The electromagnetic
waves in such structures are effectively confined in the
vertical (out-of-plane) direction [29,54-56], with radiative
leakage inhibited by total internal reflection due to the
refractive index difference with surrounding media [57,58]

(air and substrate). This indeed allows a reduction to a
2D model, in which electromagnetic fields decouple into
two independent polarizations: transverse magnetic (TM)
and transverse electric (TE) [59,60]. TM polarization cor-
responds to one out-of-plane electric field component and
two in-plane magnetic field components, while TE polar-
ization involves two in-plane electric field components
and one out-of-plane magnetic field component. Waves
with TM and TE polarizations propagate independently in
2D. Crucially, since scattering arises through the electric
field, the interaction with disorder due to randomly varying
dielectric permittivity differs: TM waves couple via a sin-
gle electric field component, while TE waves involve two,
leading to fundamentally different scattering behavior.

In this section, we consider TM polarization, which
obeys a scalar wave equation [49] corresponding to Eq. (1).
This choice is consistent with the modeling approach in
Ref. [32], where numerical simulations were performed
using the KWANT package [61]. Here, we employ the
MESTI (Maxwell’s Equations Solver with Thousands of
Inputs) software package [62], which offers a substan-
tial computational speedup through an augmented par-
tial factorization method. In this work, we do not con-
sider spatially uniform loss, which would be required to
simulate the effects of weak out-of-plane scattering in
experiments [32]. In our previous work [63], MESTI was
validated against KWANT and shown to produce quanti-
tatively consistent results. In Sec. IV B, we extend our
study to TE polarization using MESTI’s vector-wave capa-
bilities, allowing further verification of the microscopic
approach to optical sensitivity, thereby validating and
extending the applicability of the microscopic sensitiv-
ity model to vector waves involving multiple polarization
components.

Based on the above considerations, we conduct 2D
simulations with the following parameters: vacuum wave-
length Ao = 1.55 pwm, slab dimensions L x W = 250 x
300 wm?, and background refractive index n.g = 2.85.
Disorder is introduced by placing a low concentration of
circular air holes—filling fraction f = 10%, radius a =
100 nm, and refractive index n,; = 1. These parameters
were chosen to ensure that the diffusion approximation
is satisfied, i.e., £ < W, L. This condition also guarantees
that the sample thickness greatly exceeds the input-output
separation, so the medium can be regarded as effectively
semi-infinite. The actual value of £ = 6.4 um was matched
to the experiment in Ref. [32], but this is irrelevant in the
context of the current discussion. The value of £ has been
determined using the procedure described in Ref. [63].
We will also present the results of simulations where the
transport mean free path is varied. To model the effect of
open boundaries, the numerical domain was surrounded
by a perfectly matched layer [59]. Injection and detec-
tion ports of widths W, and W,, separated by distance
d > ¢, are modeled by attaching two waveguides to the
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front interface (see Fig. 3). We will present simulations for
different combinations of these parameters.

We finally note that while all 2D disordered systems
are expected to exhibit Anderson localization effects [33],
these only become relevant at lengths comparable to or
exceeding the localization length &. In the weak-scattering
regime considered here (k€ > 1), this length is expo-
nentially large, & o £ exp(ckf) with ¢ ~ 1 [33]. For the
parameters used in our simulations, as well as in typical
optical experiments, £ is vastly larger than the system size
and all other relevant scales, so localization effects can be
safely neglected.

B. Random input excitation

Computing optical sensitivity using Eq. (8) requires
knowledge of two fields: Ey(rp) and ¢(ry). The former
is the field inside the system obtained by illuminating it
through the input port with a random combination of all
modes. Computing the latter field requires a separate sim-
ulation, but for the same configuration of disorder. This
is obtained by recording the field at the output port from
the first simulation, conjugating it, and sending it back into
the sample as the input for the second simulation. Hav-
ing computed the internal fields, the quantity in Eq. (8)
is obtained for that specific disorder configuration. Subse-
quently, we compute this expression for 1000 realizations
of disorder, requiring twice as many simulations to achieve
a sufficient statistical average. Figure 4(a) depicts the result

(a)

—_
O
~

%1077 x10~7

I

found for a system with £ = 6.4 um, W, = W, = 10 pm,
and an input-output separation of d = 128 pm = 20 x ¢£.
The characteristic “banana” shape can be seen. We would
like to emphasize again the remarkable fact that the statis-
tical average of the product of two fields in Eq. (8) results
in a nonzero value.

Computations based on Eq. (28) require statistically
averaged intensities throughout the volume of the system.
These are obtained by illuminating it through input port
with a random combination of all modes. Thus, the simu-
lations used to compute E((ry) for Eq. (8) can be reused

to compute TORL(rO)—this is obtained by a mirror reflection
across the horizontal line through the middle of the system.

In Fig. 4(b), we compare the sensitivities computed from
Egs. (8) and (28)——=circles and crosses, respectively—and
normalized via Eq. (32). Here, the separation distance
is fixed at d = 128 wm = 20 x £, and multiple values
W, = W, are tested. We can see that, as expected based
on the theoretical argument in Sec. II D, the two methods
give the same result. The fact that simulations for dif-
ferent values of W, = W, agree among themselves also
supports our argument in Sec. I E for normalizing sensi-
tivities. Furthermore, in Appendix C, we demonstrate that
the curves in Fig. 4(b) agree with simulations performed
for Wy # W, cases. Such an agreement is also expected
for the normalized sensitivities, based on Eq. (32).

In Fig. 4(c), we demonstrate that the dependence on
the input-output separation d can also be predicted by
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FIG. 4. Comparison of microscopic and diffusive models for optical sensitivity under random input excitation. All results are aver-
aged over 1000 disorder realizations and normalized according to Eq. (32). The transport mean free path is £ = 6.4 pm. (a) Sensitivity
map computed using the microscopic sensitivity (MS) expression, Eq. (8), exhibits the characteristic banana-shaped pattern. The input
and output port widths are W, = W, = 10 pwm; the source-detector separation is d = 128 pm = 20 x £. (b) Depth cross section of the
sensitivity map along the dashed line in (a). Circles correspond to the MS calculation [Eq. (8)]; crosses show results from the diffusion
approximation (DA) [Eq. (28)]. The input and detector port widths are equal. Curves are shown for 5, 10, 15, and 20 wm, with fixed
separation d = 128 pm = 20 x £. (c¢) Sensitivity at the midpoint A of the banana [peak in panel (b)] as a function of source-detector
separation. Symbols: MS results using Eq. (8) for W; = W, = 10 wm; solid line: DA prediction based on analytic intensity profiles
substituted into Eq. (28), as described in Appendix D.
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substituting analytical solutions for 7&1(1'0) and TORL(rO)
found from the diffusion equation. We derive such a solu-
tion in Appendix D. The decrease in the sensitivity aqis =
—1/(w*k*d?) o 1/d* with increasing d is the well-known
trade-off between depth and sensitivity. Indeed, larger d
leads to an increase in the radius of the banana pattern in
the sensitivity map. Photons undergoing diffusive random
walks along these long paths are less likely to reach the
output port. As a consequence, the remitted signal is less
sensitive to the total flux variation due to local perturbation
at larger depth inside the system [see Fig. 4(c)].

For completeness, we computed sensitivity using a
brute-force sequential approach—Method I—in Fig. 3(a).
Recall that sensitivity is defined as &(rg) = §F/§¢’—the
difference between the average remitted flux detected at the
output waveguide with and without a perturbation center
at ro. The agreement with Eq. (8), shown in Appendix D,
provides further evidence for the robustness of our micro-
scopical approach to optical sensitivity.

C. Shaped-wavefront excitation

We motivate this section by revisiting the assumptions
used in obtaining Eq. (28)—the diffusion approximation
for optical sensitivity. In fact, this incorporates two sep-
arate assumptions that become particularly clear when
we examine the process of averaging in the microscopi-
cally exact Eq. (9). The first assumption is the diffusion
approximation itself, stating that the ensemble-averaged
intensities can be described by the diffusion equation and
that the dimensions of the system are much larger than
the transport mean free path. The second assumption has
to do with the averaging procedure of the input wave-
front encoded by coefficients v, in Eq. (9). The procedure
involved in obtaining Eq. (28) in Sec. IIC amounts to
performing disorder averaging with no regard for the val-
ues of v,. Therefore, once the diffusion approximation
has been made, it is no longer possible to account for a
specific input wavefront. This observation motivates the
use of the microscopic expression for sensitivity, Eq. (8)
[equivalent to Eq. (9)], including the sample-specific exci-
tation coefficients, and only then performing statistical
averaging.

Second, it has been shown in Ref. [32] that by excit-
ing the system with an incident wavefront corresponding
to the MRE [see the description before Eq. (14)], we could
enhance not only the signal in remission but also the sensi-
tivity. In our previous work, we used the proper microscop-
ical expression Eq. (8) to compute the sensitivity; however,

it remained unclear whether Eq. (28) could still apply with
TXRE (rg) and 710\/1[11:]5 (ro) substituted instead of intensities for

random input excitation. Below, we clearly demonstrate
that Eq. (28) is inadequate and cannot be used to describe
the optical sensitivity of remission eigenchannels.

Here, we carry out comprehensive numerical tests of
the results of Sec. IIC. Figure 5(a) shows the disorder-
averaged microscopic sensitivity (MS) map in Eq. (8),
computed for the MRE for a system with W, = W, =
10 wm, separation d = 20 x £, and transport mean free
path £ = 6.4 wm. We observe, in agreement with our ear-
lier work [32], that the sensitivity map retains the banana
shape but is enhanced by a factor that appears to be con-
stant within the accuracy of our simulation. Remarkably,
as we verify in Appendix C, this conclusion holds even
when W £ W,. Therefore, below, we present only the
depth dependence of the sensitivity maps taken along the
line y = d/2, shown as the dashed line in Fig. 5(a).

In Fig. 5(b), we compare the sensitivity maps for MRE
excitation obtained using two different methods. The filled
circles represent numerical results computed using the
microscopically exact Eq. (8), which remains valid for
coherent excitation. The crosses, however, require care-
ful interpretation. While Eq. (28) (derived in the dif-
fusion approximation) is rigorously justified for random
input excitation, it does not strictly apply to the coher-
ently excited MREs for two reasons. First, as noted
above, averaging of intensities cannot be carried out sep-
arately from averaging of the excitation coefficients v,,
which are unique to each disorder realization. Second,
the diffusion equation does not accurately describe the
disorder-averaged intensity distribution of MREs due to
interference effects, which are neglected in the diffusion
approach. Nevertheless, as an exploratory step, we substi-
tute the numerically computed disorder-averaged intensity
of MREs into Eq. (28), yielding the results represented by
the crosses. While this substitution lacks theoretical jus-
tification, it provides an empirical comparison and helps
assess the limitations of the diffusion approximation in this
context. To avoid confusion, we denote these data as DA*
rather than DA, emphasizing that they are not a direct
application of the diffusion approximation but rather an ad
hoc extension.

Among the four datasets, corresponding to W, = W, =
5,10, 15, and 20 wm, DA™ agrees with the MS in only one
case. We believe this agreement is accidental. To simplify
the analysis, we limit our discussion to the value of sen-
sitivity in the middle of the banana, labeled with the letter
“B” in Fig. 5(a). Since we have already determined that the
sensitivity maps retain their shape, comparison of its value
at a predetermined point is sufficient. In Figs. 5(c)}-5(f),
we tested whether DA™ is capable of describing MS when
the parameters d, ¢, Ni, and N, are varied. We conclude
that, in sharp contrast to the applicability of DA to the ran-
dom input case in Fig. 4, DA* is inadequate in describing
the MS of the MRE. In other words, the sensitivity in the
case of controlled wavefront excitation does not reduce to
a product of two intensities as in Eq. (28). This systematic
deviation between MS and DA* provides direct evidence
of nontrivial correlation effects, which are neglected when
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FIG. 5. Sensitivity map for excitation with the maximum remission eigenchannel (MRE) and comparison with diffusion-based
predictions. (a) Sensitivity map computed using the microscopically exact expression, Eq. (8), for MRE excitation. The characteristic
banana-shaped pattern is preserved, but the overall sensitivity is enhanced compared to the random input case. Parameters: W, = W, =
10 wm, the separation is d = 20 x ¢, and the transport mean free path £ = 6.4 pm. (b) Depth cross section along the midplane [dashed
line in panel (a)], comparing sensitivity from the MS formulation [Eq. (8), filled circles] and a heuristic application of Eq. (28) using
the disorder-averaged intensity of MREs (crosses, denoted as DA*); see main text for details. (c)—(f) Sensitivity at the central point A
in panel (a), plotted as a function of: (c) input-output separation d; (d) transport mean free path ¢; (e) number of input channels N,
and (f) number of output channels N,. In all cases, the results are averaged over 1000 disorder realizations and normalized according
to Eq. (32).
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statistical averaging over input field patterns is performed
separately from intensities in Eq. (9).

D. Relationship between sensitivity enhancement and
remission enhancement

In our previous work [32], we observed the intriguing
result that the enhancement of sensitivity n¥'** was close
to the enhancement of the remission n%~F for the MRE.
If generally true, such a relationship could be extremely
useful because the enhancement of remission can be the-
oretically predicted. Indeed, the theoretical technique [64—
66] called filtered random matrix (FRM) theory has been
shown to correctly reproduce the full distributions of the
eigenvalues of a subset of the full scattering matrix of a
complex system, in our case (R. In Ref. [32], we used FRM
theory to obtain an analytical expression for the remis-
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sion enhancement—the ratio P/ = n?gRE between the
maximum and average eigenvalues of the remission matrix
RTR. In Appendix G, we include a brief summary of
FRM theory. A less accurate but more intuitive model—the
effective Marchenko-Pastur model—is also presented in
Appendix H.

In Figs. 6(a)-6(d), we compare theoretical predictions
for the remission enhancement ny"" to the sensitivity
enhancement n¥RF and find that they indeed agree well.
We now present an argument that this relationship is
related to the invariance of the sensitivity map to the input
field profile, as observed in Sec. III C above.

Let us recall that, by definition, the sensitivity is the
response of the flux to the localized perturbation §e(r) =
i€”8(r —rp): S(rg) = 8F (rg)/€” [see Eq. (8)]. As such,
8F (ro) implicitly depends on the location of the perturba-
tion. By performing volume integration over ry on both
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FIG. 6. Comparison between remission and sensitivity enhancement factors. (a)—(d) Symbols show the enhancement factors for
sensitivity ngfIRE (filled circles) and remission n%RE (open circles) as a function of (a) source-detector separation d, (b) transport mean
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the MP-model prediction when the contribution of long-range correlations C, is omitted [Eq. (38)].
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sides of the definition of sensitivity, we conclude that

/ S (ro)d’ry / 8F (ro)d’ry. (33)
Volume integration of the localized perturbation is equiv-
alent to estimating sensitivity to a global, i.e., spatially
uniform, perturbation €”. We now assume that the volume-
integrated change in flux, the right-hand side in Eq. (33),
is proportional to the total flux without perturbation:

[ e o [Z m::fhmbav:/va}, (34

bad

where we used the explicit expression for the flux in terms
of R. This amounts to assuming that a sufficiently small
uniform perturbation should reduce all elements of the
remission matrix equally. This assumption is supported
by theoretical and numerical studies showing that, in the
weak-absorption regime, uniform loss preserves the spa-
tial profiles of individual quasimodes and consequently
attenuates all scattering coefficients proportionally [67,68].
Substituting appropriate input vectors v, and performing
statistical averages, we can find two versions of Eq. (34):
one for the MRE and one for random input excitation.
Forming a ratio, we obtain an insightful constraint

—MRE _
f S (l‘o)d3l‘0 . Pmax MRE

- X MRE (35)
Iapydr, o "

Here, we note that random input excitation is statisti-
cally equivalent to exciting each eigenchannel with equal
probability, pr; = p, where p is the average remission
eigenvalue. Such a relationship has profound implica-
tions—it states that the maximum achievable global (i.e.,
volume-integrated) enhancement of sensitivity is equal to
the remission enhancement for the MRE:

S(ro)d’r,
f 0 0 nI\Q{IRE.

36

[ 8M (e)dPry ()

Wavefront shaping takes advantage of the linearity of

the wave equation and is known to produce nontrivial
constraints or sum rules [69].

Furthermore, the fact that the spatial distribution (the

map) of sensitivity for the MRE is nearly the same as

that for random input excitation, EMRE (rg) §Rl(r0) [see
Sec. Il C], allows us to take the argument in Eq. (35) a
step further and conclude that

MRE n}{\RfIRE' (37)

Ng =
This is an interesting result in the context of our discussion
in Sec. IIB, where we found that $TC yields the high-
est local sensitivity enhancement. The argument above

now allows us to conclude that MRE achieves the highest
global enhancement of sensitivity.

In Ref. [32], we observed that the discrepancy between
nyYRE and pyRE diminishes in the limit d > W + W,
which is fully consistent with our extensive tests of this
relationship reported in Fig. 6. In fact, we see good agree-
ment between sensitivity and remission enhancements
for d as small as around 3 x (W, + W,) [Fig. 6(a)]. In
Appendix H, we provide extensive numerical evidence
relating ny'RE to niytE.

The results presented in this section focus on 2D dis-
ordered systems, where the long-range intensity corre-
lation of speckle patterns, usually denoted as C,, con-
tributes significantly to the remission enhancement (see
Appendix G); however, in most three-dimensional (3D)
diffusive media, particularly biological tissues, the impact
of C, is expected to be considerably smaller, as its con-
tribution to the enhancement, N;C,, scales as o« Ni/kf in
2D and as o< /N /k£ in 3D. Consequently, in 3D media
with k¢ > 1, the enhancement of optical sensitivity will
primarily follow the prediction

2
N
MRE 1 N
nm C2~>0 + N2 ’

which stems from the Marchenko-Pastur limiting distribu-
tion for remission eigenvalues [32]. The dashed lines in
Fig. 6 illustrate this limiting behavior by omitting the C,
contribution from the sensitivity calculations. These results
indicate that, although WFS in 2D can exploit mesoscopic
correlations to enhance sensitivity beyond diffusion theory,
enhancement of remission, and thus sensitivity, can also be
achieved in 3D, particularly in the N; > N, regime. The
physical mechanism for enhancement of remission and/or
sensitivity in the absence of appreciable C, correlations
is interference of multiple coherent contributions at the
output port—a consequence of the determinism of wave
transport.

(38)

IV. OPTICAL SENSITIVITY: VECTOR WAVES

Our previous theoretical and numerical analyses in
Secs. II and III have been based on the scalar wave
equation—Eq. (1). Although the scalar wave approxima-
tion is a common simplification in the study of wave
transport in random media [49], its validity requires care-
ful consideration in the context of coherent control via
WES. Indeed, it has been demonstrated that the polariza-
tion of the wave in strongly scattering media can reliably
be manipulated [70,71]. Notably, the first step toward the
full 3D vector-wave treatment can be readily made in
2D. In this geometry, the electromagnetic wave equation
decouples into TM and TE polarization states. The for-
mer is equivalent to the 2D scalar wave equation, which
we modeled numerically in Sec. III. TE polarization, on
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the other hand, consists of two components of the electric
field. Therefore, modeling TE waves incorporates an addi-
tional scattering channel, compared to scalar or TM waves,
between the two polarization components of the electric
field. In Ref. [63], we used numerical simulations to inves-
tigate whether wave polarization has any effect on the full
distribution of the remission eigenvalues. We found that
the distribution remained independent of the polarization
provided that the two systems had the same macroscopical
scattering parameters, i.e., the same transport mean free
path. This is consistent with a recent numerical study [72],
which found that the distribution of the transmission eigen-
values in fully vectorial 3D simulations coincides with that
for scalar waves.

Generalizing this result to the sensitivity is far from
obvious. Clearly, the sensitivity for scalar waves in Eq. (8)
is determined by the interference between two fields—one
launched from the input port Ey(ry) and the other from
the output one ¢(ry). Extending such a formula to TE
waves should, in fact, include interference effects between
two polarization states of each field. Such a generaliza-
tion is nontrivial, motivating us to revisit the derivation of
sensitivity for TE waves below.

A. Mapping onto the scalar sensitivity model

We begin by enumerating the underlying assumptions
of our theoretical model. First, we consider a TE-polarized
wave propagating into a 2D scattering system. This cor-
responds to considering two in-plane components (x, )
of the electric field and one (z) component of the mag-
netic field. Second, we consider nonmagnetic media where
i = uo. Lastly, scattering originates from the spatially

J

V2e(r)

Sk (r) ~ k2 Se(r) — ———= Se(r) + %

2 €2(r)

Ve(r) - Ve(r)

nonuniform dielectric permittivity € (r), which is assumed
to be real. Under these conditions, the equation describ-
ing the out-of-plane component of the magnetic field H. (r)
becomes

VZH (r) _|_ sz(r) H (r) — LVe(r) .VH (r) = O
: e(r) ’

In contrast to the scalar case (TM polarization) in Eq. (1),
we gain an additional term ~ Ve(r) - VH,(r). Both vector
quantities in this term lie in the plane.

In the next step, we demonstrate that it is possible, with
a judicious change of variables, to transform Eq. (39) into
a Helmholtz equation similar to Eq. (1) for scalar waves.
Introducing the (scalar) function

h(r) = ﬁ’ (40)
we transform Eq. (39) into
V2h(r) + k?(r) h(r) = 0, (41)
where k2 (r) differs markedly from k*¢(r) in Eq. (1),
2 .
) = Re(r) + w0 S Vew Vel )

2¢(r) 4 €2(r)
Such a complex dependence on €(r) causes further com-
plications when we introduce a small perturbation §e(r),
needed for computing sensitivity. Unlike Eq. (1), the linear
perturbation term in k% (r) becomes

3 Ve(r) - Vée(r)

86(1‘) -3 52(1‘)

pEyes (43)

Next, we apply the same theoretical approach as in Sec. I A to derive the appropriate expression for the TE sensitivity

(see Appendix A). We arrive at

VZ2e(rg)

éVe(rO) -Ve(ryg) 3

Ve(rg)

S(ro) = —3V<k2 a0 * 3

where ¢y, (ry) and hy(ry) are defined analogously to ¢ (ry)
and Ey(rp) in Eq. (8). As in Eq. (8), this expression is exact
in the limit of small perturbation. In contrast to the scalar
case, Eq. (44) depends on derivatives of the dielectric
function, making it cuambersome for numerical modeling.
Here, we present arguments that the additional terms in
the parentheses in Eq. (44) can, in fact, be insignificant in

€3(rp)

- EV(W)> Re[¢h(r0)h0(r0)]s (44)

(

many systems. Specifically, we consider two examples of
such disordered media:

Case I: a biological medium such as weakly scattering
tissue. The dielectric function in this case varies rather
weakly—the characteristic fluctuation §e(rg)? ~ is much
smaller than the mean value €(ry). Furthermore, the char-
acteristic spatial extent of these variations L. is much
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larger than the wavelength of light. These two facts allow
us to obtain a rough estimate for the gradient terms in

Eq. (44) as (86(r0)2 /€ (ro)2> /Lg and to conclude that they

should be negligible compared to the first term &>.

Case II: the planar scattering media considered in
Ref. [32]. This is also used as a model in our scalar simu-
lations in Sec. III. Here, we consider a uniform (but large
€ ~ 2.85?) dielectric function with a small concentration
of air holes (€,;; = 1). In such a medium, the variations of
€(ry) are limited to the interfaces between the dielectric
and air holes, making them statistically rare. Therefore,
although the nonzero contributions are of the order of
unity, their statistical contribution (volume average) is
small. Specifically, in our numerical model, we estimate

that this contribution is of the order of (Ax/r) x f <« 1.
Here, Ax is the pixel size, r is the radius of the hole,
and f 1is the filling fraction of the air holes. This esti-
mate shows that this contribution, limited to only interfaces
between the dielectric and air, vanishes as Ax/r — 0. Con-
sequently, in this case too, we are justified in omitting
the gradient terms, and we obtain the following simplified
expression for the TE optical sensitivity:

S (ro) = —k*8VRe[¢y(ro)ho(ro)]. (45)

This is the expression we are going to investigate numeri-
cally in the next section.
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Effect of polarization on microscopic optical sensitivity. (a),(b) Sensitivity maps computed using Egs. (8) for TM polarization

and (45) for TE polarization, respectively. Results are averaged over 1000 disorder realizations. The microscopic disorder in (b)
is adjusted to yield the same transport mean free path as in (a), £ = 6.4 pm. The sensitivity distributions show strong agreement
in both shape and magnitude. (c) Depth cross section along the midplane [dashed lines in panels (a) and (b)], comparing the TE
and TM polarizations for different values of £. The input-output separation is d = 20£. (d) Further comparison of the TE and TM
sensitivity at fixed £ = 6.4 pwm, showing that the agreement persists across different geometrical parameters, such as the input-output

port separation d.
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TABLE I.  Sensitivity 8 (rp) evaluated along the banana trajectory for three excitation schemes: random input, PC input, and MRE
excitation.
Random input sensitivity PC enhancement "¢ MRE enhancement nMRE
2
1 NN, N,
2D: =8V x — x xN x (1 — + N C
2 P2 1 ( +‘/N2+ 1 2)
2
9 N 1N2 N 1
3D: =8V x — X XN x|14+ . [—+NC
87k~ d*cosf ! ( VN,

B. Numerical analysis

We use the numerical model described in detail in
Sec. III A, with the only difference being that we now con-
sider the TE polarization using the MESTI software package
[62]. The shaped wavefront used to excite the maximum
remission eigenchannel is constructed from the remission
matrix R, which, in this case, represents the field remis-
sion matrix for the out-of-plane component of the magnetic
field. Our goal is to compare the vector-wave (TE—two
components of the electric field) sensitivity to the scalar
(TM—one component of the electric field) case considered
in Sec. Il A. Figures 7(a) and 7(b) show 2D sensitivity
maps 4(rp) in the TM and TE polarization, respectively.
The data are statistically averaged over 1000 realizations.
The input and output widths W, = W, are 10 um and the
input-output separation is d = 20 x £. We set the micro-
scopic disorder parameters, specifically the air-hole size
and density, for the TE case such that the macroscopic scat-
tering parameter—the transport mean free path—matches
that in the scalar simulation, £ = 6.4 um. We observe the
typical banana profile in both cases, as the sensitivity maps
agree quantitatively. This can also be observed from the
cross section of each map along the midplane [dashed lines
in Figs. 7(a) and 7(b)] shown in Fig. 7(c). To confirm
that the agreement between the scalar and vector cases is
not accidental, we varied the microscopic disorder in both
cases to reduce the mean free path to £ = 3.2 pum. Again,
we observe good agreement between the simulations [see
Fig. 7(c)]. We also verified that geometrical parameters,
such as the separation distance d between the input and
output ports, do not introduce any discrepancy between
the scalar and vector results. Figure 7(d) shows that the
agreement is indeed preserved irrespective of the value
of d.

To provide insight into the polarization invariance of
remission sensitivity, we make two complementary obser-
vations—one formal and one physical. Formally, Eq. (45),
derived for TE-polarized vector waves in 2D, has the
same mathematical structure as Eq. (8) for scalar (TM)
waves. As discussed in Sec. IV A, such structural simi-
larity is expected for a broad class of scattering systems.
This supports the conclusion that the optical sensitivity,
defined via these equations, should be largely polarization

independent. Physically, it is difficult to identify any mech-
anism by which a particular component of the electric
field would be systematically favored inside the diffusive
scattering system once the scattering direction becomes
completely randomized.

V. CONCLUSION

In this work, we developed a microscopic theory for
optical sensitivity that remains valid under coherent wave-
front control and verified its consistency with diffusion-
based models in the appropriate limit. This formalism
revealed how sensitivity can be systematically enhanced
via phase conjugation and remission eigenchannels, and
it enabled quantitative predictions of the enhancement
achieved with these input excitations. Although the numer-
ical simulations presented here were conducted in 2D, the
theoretical description remains applicable to 3D systems.

To summarize our results, we evaluated the sensitiv-
ity map along the “banana” trajectory—a half-circle path
of radius d/2 connecting input and output (see Table I).
This shape corresponds to the spatial profile of sensitivity
under random input. While this profile is preserved under
the MRE and PC excitations, the required input wave-
fronts differ: the MRE uses a fixed input wavefront found
by maximizing remission, whereas PC requires distinct
inputs for each target position. In the 2D case, sensitivity
is nearly constant along the path, with PC input yielding a
factor of N; enhancement n°C due to constructive interfer-
ence of time-reversed paths. The MRE yields a sensitivity
enhancement nMRE which can be predicted either by the
FRM theory or by the effective Marchenko-Pastur model
reported in Table I, both incorporating the effect of long-
range correlation C, (see Appendices G and H). In 3D,
the sensitivity varies along the banana geometry as a func-
tion of polar angle 6 (see Appendix D); however, both the
PC and MRE enhancement factors remain the same as in
2D. That said, the contribution of C, to n™MRF is expected
to be much smaller, if not insignificant, in most 3D sys-
tems where £ >> A. This implies that, in 3D, the dominant
mechanism for remission or sensitivity enhancement stems
from constructive interference, which is preserved due to
the deterministic nature of coherent wave transport.
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We note two important considerations that motivate
the practical implementation of coherent wavefront con-
trol strategies. First, the decay of sensitivity with source-
detector separation is more severe in three dimensions:
while in 2D the sensitivity scales as §?P o 1/d?, in 3D
it follows &3P o 1/d*, making the signal diminish even
more rapidly with depth (c.f. Table I and Appendix D).
Second, the numerical studies in Secs. III and IV focused
on a localized absorber used to define sensitivity but did
not account for attenuation due to absorption through-
out the bulk medium, which is common in biological
tissue samples. While the microscopic expression for sen-
sitivity remains unchanged in the presence of absorption,
the resulting spatial profile of the sensitivity map does
change. As we demonstrated in our earlier work [32], bulk
absorption makes the banana-shaped sensitivity map shal-
lower. The above considerations motivate further study
and demonstrate the potential of WFS to enhance signal
strength through constructive interference, counteracting
the degradation of sensitivity caused by both geometric
spreading and attenuation.

From a practical standpoint, MREs offer a unique oppor-
tunity—they maximize the detection sensitivity throughout
the entire imaging volume, while only requiring knowl-
edge of the remission matrix, which can be obtained
noninvasively. Furthermore, our analysis of sensitiv-
ity fluctuations in Appendix F shows that, in addition
to enhancing the mean sensitivity, MREs also exhibit
reduced realization-to-realization variability compared to
random input. This robustness ensures that standard
inverse-problem techniques can still be applied with a
wavefront-shaped input, now with a significantly improved
signal-to-noise ratio and consequently greater penetration
depth.

The next challenge is to translate these insights into
experimental implementations that can overcome the con-
straints of conventional DOT. The use of dynamic wave-
front control in remission-based imaging needs to be
explored in live biological systems, where temporal vari-
ations in tissue properties introduce additional complex-
ity. Moreover, the question remains whether the princi-
ples demonstrated here can be extended to fluorescence
and other optical contrast mechanisms that operate under
highly scattering conditions.

Beyond imaging, these results point to a broader class of
problems in wave physics where coherent control can be
used to selectively enhance signal extraction in complex
media. The ability to enhance and/or reshape sensitivity
maps in a deterministic way suggests applications in adap-
tive sensing, optogenetics, and noninvasive diagnostics,
where penetration depth and resolution are fundamentally
limited by scattering. The real impact of this approach
will come from experimental validation and the integration
of computational wavefront control into next-generation
imaging systems.

ACKNOWLEDGMENTS

This work is supported partly by the U.S. National
Science Foundation (NSF) under Grants No. DMR-
1905442 and No. DMR-1905465, by the U.S. Office of
Naval Research (ONR) under Grant No. N00014-221-1-
2026, and by the French Government under the program
Investissements d’Avenir. Extensive numerical simula-
tions in this work were carried out on the Mill high-
performance computing (HPC) cluster [73] at Missouri
University of Science and Technology. P.J. and A.Y. grate-
fully acknowledge Predrag Lazic for technical assistance
and IT support.

DATA AVAILABILITY

The data that support the findings of this article are not
publicly available. The data are available from the authors
upon reasonable request.

APPENDIX A: PERTURBATIVE APPROACH TO
DIFFUSE INTENSITY

The intensities 7o(r) and I(r), before and after a pertur-
bation is introduced, satisfy the diffusion equation

—DV*Ty(r) = 0,
[-DV? + vgsp()] 1(r) = 0.

(A1)
(A2)

Here, v is the energy velocity (equal to the phase velocity
¢/n in the absence of resonant scattering), D is the diffusion
coefficient, and § . (r) is a local perturbation in absorption.
Although we assumed above that the diffusion coefficient
is spatially invariant and absorption is zero in the absence
of the perturbation, this description can be straightfor-
wardly generalized to include these effects. Inclusion of
such effects would simply detract from our main goal of
comparing and contrasting the diffusive picture below with
the microscopic treatment in Sec. I A.

The leading correction to Io(r) can be estimated pertur-
batively as

I(r) >~ To(r) + / dr'dr” Gy(r,v') V' (', ") Ty (x"), (A3)

where G{)(r, r’) is the Green’s function of the diffusion
equation

—DV2Gy(r,r¥) = 8(r — '), (A4)

and the perturbation, which is assumed to have a linear
size much smaller than the transport mean free path ¢, is
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represented by the delta potential

Vlr) = 9'8(r —ry), with U' = —vgsusV. (A5)
Substituting Eq. (AS5) into Eq. (A3) gives the perturbation
of intensity §/(r) = I(r) — Iy(r) similar to Eq. (3),
81(r) = 0" Gy(r,r9) Ty (ro). (A6)
Comparing this to Eq. (3), we find S = ke”.
Equation (A6) is used in Sec. II C to evaluate the change
in the flux at the detector in response to the perturbation.

/ = .2 / 1 / Val
(xb1Golro)(rolGol xa) (xs|Gol xa)* = /dndrldrzdr/z |(x6]Golry) | T (xh, 1) (rara | W(ro) [ryey) T(ry, 1)) [ (X Gol xa)

which involves the 4-rank tensor W(ro) = [C_?o [ro) (ro| Go]
® G:g. The kernel W(rg,rp,11) = (ro0;| W(ro) |rir;) can
be expressed as

W(ro,r2,11) = (12| Golro) (ro| Gy [r1)(r2| Golr1)*, (B2)
as illustrated in Fig. 8. This gives a non-negligible con-
tribution to the integral Eq. (B1) for r; and r, in the
vicinity of ry. Using I'(ry, 1)) >~ I'(ro,r}) and I'(r}, rp) =~
I'(r}, ry), we get

(x61Golro)(rolGolxa) (X61Gol Xa)* = Kpry W(Ko) Kryas

(B3)
where Ky, = Kur, 1s defined as
— 2
Ko = [t @or) [iniGalx[ . @4
r! ry rg ro r I’
1 0 2
0 eyt e b
RPN U U 00 65 SRR dbddboe b
I'l I‘1 I‘g 1'2
GoodG) T W (ro) I' Gy®Gl
FIG. 8. Leading diagram in the expansion of

(x51Golro) (rolGolxa){xs|Golxa)*. Solid and dashed hori-
zontal lines represent the Green’s operators Gy and Gg,
respectively, while diamonds represent scatterers. Vertical
dashed lines connect identical scatterers.

APPENDIX B: PROOF OF THE GREEN’S
FUNCTION IDENTITY EQ. (31) WITHIN THE
DIFFUSIVE APPROXIMATION

To evaluate the left-hand side in Eq. (31), we expand
each Green’s function over all possible scattering paths,
selecting only those paths that do not accumulate phase
terms dependent on the specific disorder configuration.
These paths are represented by the ladder diagram shown
in Fig. 8. We find

2

B

(B1)

(

and W(ry) = f drdr,W(rg,rp,r1). The integrated kernel
is independent of the position ry of the perturbation, since

dq
(2m)?

Go(9)*Go(q)*.
(B5)

W(re) = (rol GoGiGo Iro) = /

Using Go(q) = (k* — ¢> — ik/€)~", explicit calculation in
the limit &€ > 1 gives

Y D-2
Wrg) ~ -5 (f) : (B6)

8k2 \ 7

We conclude that the left-hand side of Eq. (31) can be
expressed as

(x61Golro){rolGolxa){xs1Gol Xa)*

i (kN7
(_) KbroKroa-

= - — B7
82\« (B7)

The right-hand side of Eq. (31) can also be expressed
in terms of the product Kp Ky, Indeed, in the diffusive
limit, we have

(x| Gol xa) I*
=/mﬁmemWNmnWQOW

~ [/ dr, |(r0|(_}0|r2>|2] /dl‘lr(l‘o,l‘l) |(1'1|(_30|)(a>|2

¢ (k\??
:Ec<;) Krga- (B3)
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FIG. 9. Comparison between the MS and DA results under random input excitation for asymmetric input and output port widths
(W) # W5). (a) Simulated sensitivity maps for systems with transport mean free path £ = 6.4 wm, using different input and output
width combinations (in pm): 10 x 5, 10 x 10, 10 x 15, and 10 x 20. Excellent agreement is observed in all cases. (b) Validation of
the microscopic sensitivity formula: results obtained using the second expression in Eq. (8) (blue circles) are compared with direct
brute-force calculations based on the first part of Eq. (8) (red circles), confirming consistency.

This result implies that Eq. (B7) can be written as

{(xo1Golro){rolGol xaX x61Gol xa)*

T D=2
=zi(;) (1 Golro) 2 [(rolGolxa)l>,  (BY)

and the identity Eq. (31) then follows naturally.

APPENDIX C: ASYMMETRIC CASES FOR
RANDOM AND COHERENT INPUT
SENSITIVITIES

In Sec. III B, Fig. 4, we showed the computation of the
normalized sensitivity for the random input excitation for
the symmetric configuration with W, = W,. In Fig. 9(a),
we also include the numerical results for asymmetric input
and output cases and observe perfect agreement irrespec-
tive of the ratio between W, and W,. This provides further
support for our normalization procedure in Sec. II E.

Furthermore, in Fig. 9(b), we have applied the first part
of Eq. (8). This is the serial way to compute optical sensi-
tivity by taking the ratio between the change of the output
flux and the strength of the perturbation [see Fig. 3(a)].
Numerically, we added a small amount of absorption in a
square area of £ x £, placed at several z values along the
center line. Good agreement with the sensitivity map cal-
culation confirms the validity of the microscopic approach
in Sec. IT A.

APPENDIX D: DIFFUSION APPROXIMATION
FOR SENSITIVITY IN THE REMISSION
GEOMETRY: ANALYTICAL RESULT

In the remission geometry considered in Sec. III, a
closed-form expression for optical sensitivity, Eq. (28), can
be obtained in 2D and 3D. To this end, we begin with the
normalized sensitivity, Eq. (32), in terms of the random
input intensities

(D1)

_ T \P—2 _gg
3gifr(ro) = — )

1 —RI
NN, (ﬁ I, (ro) 1, (xo).

in

Here, the input and output intensities can be found by
solving the 2D or 3D diffusion equation in semi-infinite
geometry z > 0. Atz = 0, we apply open boundary condi-
tions with an extrapolation length z, [49]. We also assume
that the widths of the input and output, located at y =
0,d [see for example Fig. 4(a)] are much smaller than
their separation Wy, W, < d. The normalization adopted
in Sec. II C assumes that NV; units of dimensionless flux are
used to excite the system. The source of diffusive waves is
V - Jpant, where Jpa = ¢/ 2negk) x e 2/¢8(y) is the ballis-
tic (unscattered) flux. The normalization factor [c/2kn.g]
is obtained from the microscopic wave equation [62].
In 2D, we find

—RI2D c N £z

I Iy = — .
i (¥0) 2kneg wD (2o + z.)? —}—yg

(D2)

Substituting Eq. (D2) into Eq. (D1), we obtain the final
result for the normalized sensitivity map,
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1

2
Zy

-2D
3450, 20) =

This is the desired analytical expression used to study
the dependence on detector separation in Fig. 4 from
Sec. III D. Interestingly, we find that Eq. (D3) is essen-
tially independent of the transport mean free path. Indeed,
at distances exceeding the extrapolation length z, ~ £, the
dependence on £ becomes insignificant. In fact, along the
crescent banana trajectory, the sensitivity remains nearly
constant:

1 1
2D
ddiff = BTy (D4)

It depends only on the vacuum wave number k = 27 /X
and source-detector separation d. For Ly = 1.55 um and

J

9

T [(20 + 2% + 32 [20 + 20 + (o — D]

(D3)

(

d =128 pm, we get 3gin(d/2,d/2) ~ 3.8 x 1077, which
agrees with the microscopical numerical calculations
reported in Fig. 4.

The 3D result can be obtained analogously by using
the appropriate expression for the Green’s function. For

Tfill(r 0), we get

—RI,3D c M Lz
L™ (ro) = PR 293/27
2knegr 27D [x5 + y§ + (20 + 2e)?]

(D5)

where the normalization factor ¢/2kn.s remains the same
as in 2D. Subsequently, we get the final dimensionless
expression for the 3D sensitivity map as

2
Zp

3D
airr(ro) = —

Similar to Eq. (D3), Eq. (D6) does not significantly depend
on the transport mean free path. Parameterizing the posi-
tion along the banana trajectory of radius d/2 with a polar
angle 6, we get the simplified expression

9 1 1

-3D

PP~ —— D7
diff 81 % k4d* % cos 6 (D7)

which now, in 3D, depends on £, d, and 6. Unlike the
2D expression, Eq. (D4), the sensitivity is no longer con-

stant along the banana. The divergence at 6 ~ +m/2 is
prevented by the surface corrections at the level

1
=3D
ddiff X —m (Dg)
APPENDIX E: COMPARISON BETWEEN THE
RANDOM INPUT AND MAXIMUM REMISSION
EIGENCHANNEL PROFILES

Figure 10 highlights a striking and unresolved feature
in the behavior of the optical sensitivity under coherent
excitation. According to the DA in Sec. IIC, the sen-
sitivity map 3(rp) is predicted to be proportional to the
product of the input and output intensity profiles at posi-
tion ro: apa(ro) o Lin(rg) x Iou(ro) [see Eq. (28)]. This
is illustrated in Figs. 10(a) and 10(b) for the RI case,
where the resulting sensitivity map exhibits the expected

1T [ 438 + o+ 2021 [ + 00 — AP + o +20°]

(D6)

(

banana-shaped profile, consistent with established DOT
theory.

When the system is excited with the MRE, a coherent
input state with a significantly different internal inten-
sity distribution is produced, as shown in Fig. 10(c).
Surprisingly, however, the product IMRE(rg) x IMRE(r))
still results in a map with a similar shape, as shown in
Fig. 10(d). This result was discussed in Sec. III C and is
referred to as a heuristic DA*. The resemblance of the pro-
files in Figs. 10(b) and 10(d) is unexpected, but it holds
even quantitatively (see Sec. III C). From the analysis in
Sec. 11 C, the DA prediction is not expected to be appli-
cable for coherent input states such as MREs, since the
DA assumes statistical independence of input and out-
put fields—a condition clearly violated by the structured
nature of MRE excitation. Nonetheless, Fig. 10 suggests
that the spatial structure of the sensitivity map remains
robust, even when the underlying field intensities deviate
significantly from those predicted by diffusion.

The origin of this robustness is not presently understood.
The fact that the product IMRE(rg) x IMRE(rg) retains a
similar shape despite strong modification of each factor
individually implies the presence of subtle constraints in
the underlying wave transport that are not captured by
existing theory. This observation highlights an important
open question: why does the DA-inspired structure of the
sensitivity map persist even for coherent input states far
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FIG. 10. Comparison between random input and MRE exci-
tation. (a) Simulated input intensity fil:ll(ro) for random input in
a system with £ = 6.4 um, d = 20¢ and W, = W, = 5 pm. (b)

—RI —RI . . .
Product I, (rp) x 1,,(ro), representing the normalized sensitiv-

ity map for random input, as given by Eq. (28) under the DA. (c)
Input intensity T?:RE (ro) corresponding to the maximal remission
eigenchannel. (d) Product T?:RE (ro) x 71(\)/[111:15 (ro), constituting the
DA* heuristic for the sensitivity map under MRE excitation, as
discussed in Sec. IIIC.

outside the DA regime? Resolving this will require deeper
theoretical insight into why the banana-like profile of sen-
sitivity is preserved even under coherent illumination. One
promising direction could be sum rules [69], which are
known to produce nontrivial constraints in mesoscopic
wave transport.

APPENDIX F: EFFECT OF FLUCTUATIONS ON
SENSITIVITY

The results presented in the main text correspond to
disorder-averaged quantities. In practice, however, both
extrinsic (sample-to-sample) and intrinsic (point-to-point
within the same sample) fluctuations play an important role
[74] in the interpretation of experimental measurements of

sensitivity. Here, we quantify these fluctuations and ana-
lyze their relevance for applications such as diffuse optical
imaging.

For each disorder realization, we computed the sensi-
tivity averaged over a perturbation area Ap centered in
the middle of the banana region. Treating this volume-
averaged sensitivity as a single data point, we compiled
distributions from 1000 disorder realizations. The results
are shown in Fig. 11. Figure 11(a) displays the distribu-
tion of 4,4, for RI, which is broad with a finite variance.
Figure 11(b) shows the distribution for the MRE exci-
tation: the mean sensitivity is increased, while the rela-
tive fluctuations are smaller. Thus, MRE achieves both
enhanced mean sensitivity and reduced fluctuations com-
pared to RI.

Figure 11(c) quantifies the relative fluctuations, o, ip /
34p, as a function of perturbation area. Both RI and MRE
show a decrease of fluctuations with increasing Ap, but
with a weaker scaling than the ideal 1/4/4p dependence
expected for uncorrelated random contributions. Impor-
tantly, across all 4p, the fluctuations of sensitivity under
MRE excitation are consistently smaller than those for
RI. This robustness resembles the behavior for the inten-
sity of high-transmission eigenchannels in the waveguide
geometry, which also exhibits suppressed realization-to-
realization fluctuations compared to random inputs [53].

The above results demonstrate that remission eigen-
channels are not only advantageous in terms of mean sensi-
tivity but also in terms of statistical stability. Their reduced
fluctuations make them particularly promising for diffuse
optical imaging applications, where this property should
result in an increase in robustness of the inverse-problem
algorithms reconstructing the locations of the perturbations
from remission measurements.

APPENDIX G: FILTERED RANDOM MATRIX
THEORY FOR PREDICTING COHERENT
REMISSION ENHANCEMENT

The detailed description of the analytical procedure used
for computing remission enhancement by applying filtered
random matrix theory can be found in Ref. [32]; how-
ever, for the sake of completeness, we will summarize here
the overall scheme of the method. In Fig. 6 in Sec. IIID,
we included solid lines that represent the analytical solu-
tions when computing sensitivity as a function of £ and the
geometrical parameters d, N, and N,.

As is well known, the scattering matrix fully encodes
multiple scattering within the medium; it is a powerful
tool that relates arbitrary input fields to their corresponding
outputs, and in principle, it allows for the reconstruction
or prediction of either (see Fig. 1 in Sec. II A). Thus,
to compute the theoretical enhancement, we rely on full
knowledge of the scattering matrix. Specifically, access to
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(a) Distribution of 44, sensitivity averaged over a perturbation area Ap = £ x £ under RI excitation. Here, Ap is centered in

the middle of the banana region. The histogram is compiled from 1000 disorder realizations. (b) Same as in (a) but for MRE excitation.
(c) Log-log plot of relative fluctuations (standard deviation normalized by the mean) computed from P(S,,) versus perturbation
area Ap = {1/64,1/16,1/4,1} x £>. Both RI and MRE exhibit similar scaling GJAP/(AAP) o 1/4$ with o 2~ 0.17 (solid line). This
confirms that fluctuations are suppressed by volume averaging in the 4p — oo limit. Importantly, the fluctuations for MRE excitation

are significantly suppressed compared to those for random input.

the scattering matrix provides information about the remis-
sion matrix (R, from which we can compute the eigenvalue
probability density function of RTR and its statistical
moments. In our setup, light propagates through an open
geometry, where input and output channels cover only a
small fraction of the total surface area. Therefore, we must
also account for incomplete channel control in both injec-
tion and detection [32]. The FRM method [64] allows us
to model the remission matrix R as a filtered matrix of
dimension N, x Np, drawn from a virtual My x M, matrix
Ry characterized by a bimodal distribution of remission
eigenvalues with a specific mean value. This model cap-
tures the idea that only a fraction of the scattering channels
are effectively excited and detected at the injection and
remission sites [32]. Both M, and the mean p, of the
bimodal eigenvalue probability density function (PDF) of
GQSKRO are effective parameters of the model, which are
unknown a priori. A theoretical calculation of the flux and

J

its fluctuations detected in the output port will be used to
express My and p, in terms of the parameters involved in
the remission experiment: the mean free path, the injection
remission distance d, and the numbers of input and output
spatial channels NV, and N,.

According to Refs. [32] and [64], the FRM theory allows
one to establish the mathematical relation between the
PDFs of RTR and GQQ;GQO. Below, we give explicit equa-
tions for the case Ny > N,, as in Ref. [32]. The case
N; < N, can be obtained by inverting the roles of N} and
N, in the equations for the eigenvalues p. We note, how-
ever, that the prediction for the largest eigenvalue ppax
remains the same in both cases. For N; > N,, the PDF of
the nonzero eigenvalues of RTR is identical to the PDF
P(p) of the eigenvalues of RRT; it is given by P(p) =
— lim,_, o+ Im[g(p + in)]/m, where g(w) is the solution to
the following implicit equation [64]:

wmyg(w) + 1 — m; g( [wmag(w) + 1 — my]? ) 1 (G1)
mag(w)[wmag(w) + my — my]” \ mag(w)[wmag(w) + my — my] ’
[
where m| = Ny /My, my = N, /M,, and the first two cumulants, we find [64]

1 24 tanh(1/7,) (p) = mi{po) = mipy, (G3)

gw)=— — ———arctanh | ————=|. (G2) 0 2 1
woowyl—w VA —w) Var<—>:m2[7+——2:|. (G4)

(0) 300 m

Based on Eq. (G1), it is possible to express the moments
P(p) in terms of the eigenvalue PDF of (R(')GQO. Thus, for

We now solve these equations to express the unknown
parameters mi, m;, and p, of Eq. (G1) in terms of the first
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two moments, (p) and (p?), to get

(G5)

m=%, (G6)

po=2 (G7)
0

where 8 = Ni/N,. The above expressions, together with
Eq. (G1), allow us to predict the full PDF P(p) from the
first two moments. The results of this prediction are shown
in Ref. [32].

The two first moments can also be evaluated analyti-
cally. First, we note that (o) = (N;/N,)pr1, Where pg; is
the mean diffusive flux measured in the output port, and it
is given by the solution to Fick’s law of diffusion,

pri ~ W>DI(y = d,z = 0), (G8)
where /(y,z) is the solution to the stationary diffusion
equation,

—DV2(y,z) = 8§(»)8(z — z.). (G9)
In the previous equations, ¥, is the width of the output,
D = £c/2 is the diffusion coefficient for light, and z, is
the extrapolation length defined in Sec. D. An approxi-
mate solution is (y, z) ~ z£/(wDy?) in the limit y > z, £.
Using N, = kW, /mr, we get pri &~ Nokl/(kd)* and

(p) =~ N Kt (G10)
P kay

Next, we need to find the expression for the normalized
variance Var(p/{p)). This variance can be expressed as a
function of the full eigenvalues p of RTR as

P N, 12
V: ) =-==1V —_— 1]—1 Gll1
”Qm) NJ:MQm>+} @

where we have p = pr;. To find an expression for
Var(p/(p)), we relate it to the fluctuations in the inten-
sity I, measured in the output waveguide after exciting
the channel a at the input. This is achieved by applying
a singular value decomposition to (R. By this, we find that
IL,=>, | Van|? 6. As a result, the fluctuations in Z, depend

J

Pmax __ [(@ = )P + (1/2)*PPla — 1 + (2/2)*(« = 1)']

on the fluctuations in p and the statistical properties of the
matrix V. By assuming that }'is randomly distributed in the
unitary group [26], we can show that in the limit M, > 1,

() ~ v ()
Var| — | =~ N;Var .
(0) (La)

As explained in Ref. [32], the average in the unitary group
makes the result independent of the channel a. It is thus
also equal to the fluctuations of intensity / = |E|? in the
output waveguide resulting from a uniform excitation of
all modes in the input waveguide. We evaluate the latter
by decomposing the field £ as a sum of all possible scat-
tering contributions reaching the output waveguide. Using
standard diagrammatic techniques, we find

(G12)

Var/ _ 1

=W G (G13)

where C, is the intensity-intensity correlation function,
given by

G

- ) o
- 4/{5(1(51’0))2//dydz(l(yaz)) [V,:K(d,0;y,2)]".
(G14)

It can be shown that in the limit d > W, £, the calculation

of C, gives
1[4 d
CG~—|—In|{— ,
: M[n“(%)*d

where numerical simulations produce y =~ 0.6. Finally,
Egs. (G11), (G12), and (G13) together give us

(G15)

N
w{ﬁl:i+mg. (G16)

(p) Ni
To reach the final step toward the sensitivity-

enhancement expression, we need to determine the upper
edge pmax Of the distribution P(p). An equation for this
quantity can be derived from (G1) (see Egs. [8] and [9]
in the Supporting Information of Ref. [32]). While this
equation is exact, it does not provide an explicit analytical
expression for ppa in terms of Ny, N,, and C,; however,
an approximate explicit solution can be obtained under the
conditions Ni,N, > 1 and d > W, which are satisfied
for most of our simulations. The upper edge of P(p), as
derived in Ref. [26], takes the form

() a(o — 1)1/3

+ O(m), (G17)

054027-24



HARNESSING COHERENT-WAVE CONTROL...

PHYS. REV. APPLIED 24, 054027 (2025)

where @ = m/p,. From Egs. (G5) and (G7), we get
a=m—2%§[Var(i>—l:| =§<N2C2+&—1>.
(o) 2 (p) 2 N,
(G18)
Because of the values of the parameters in our simula-

tions and experiments, we can consider the limit o > 1
in Eq. (G17),

Pmax \2/3 1/3 1
~ 3(= B_24+0@'?. (G19
o (2) o +O@ . (G19)

This expression allows us to compute the enhancement
in the remitted signal, pPmax/Pr1 = (N1/N2)Pmax/{p). We
can even make an additional assumption to capture the
behavior in the limit N,C, >> 1 to obtain

Pmax 3 Wl 4 1 d
~—|—In|—)+y]|.

PRI 2l | W,

This last expression shows explicitly the strong depen-

dence of the enhancement on the number of input channels

and the transport mean free path, as well as a logarithmic

dependence on the distance d; however, we remark that the

complete dependence on these parameters and the number
of output channels is captured by Eq. (G1).

(G20)

APPENDIX H: EFFECTIVE
MARCHENKO-PASTUR MODEL

As explained in Appendix G, while the FRM model
is accurate, it does not provide an explicit analytical
expression for the remission enhancement for arbitrary

TABLE II.

aspect ratio N1/N,. An alternative model for the remission
enhancement is the effective Marchenko-Pastur model,
which is less accurate but has the advantages of being
simple, intuitive, and providing an explicit expression in
terms of Ny, N, and C,. This model was first introduced
in Ref. [65] as a simple alternative to the FRM approach in
transmission. It was later shown to yield good results for
maximizing energy deposition with broadband light [66].
In the present context of remission, this model amounts to
assuming that the non-Gaussian remission matrix (R of size
N, x N; can be replaced by an effective Gaussian matrix
of size Neg X Ni, where Neg is the number of effectively
independent channels at the output. This number is smaller
than N, due to long-range correlations at the output, and
it is given by 1/Neg = 1/N, + C, [65,66]. In this model,
the matrix RTR behaves as a Wishart matrix of aspect
ratio Ni /Neg, whose eigenvalue distribution is given by the
Marchenko-Pastur law, parameterized solely by N;/Neg. In
particular, in the limit of large matrix size, the upper edge
of the distribution, normalized by the mean eigenvalue,
yields

2 2
Pmax N Ny

— =14+ =1+, —+NC . (H1
ORI ( Neff> ( \ N2 12) (HD)

To assess the accuracy of the effective Marchenko-
Pastur (MP) model in predicting remission enhance-
ment, we consider various combinations of Ny, 1/C,
and N,, looking for systematic deviations between remis-
sion/sensitivity enhancements obtained numerically and
theoretical predictions. In simulations, we consider the
system with the source-detector separation to d = 20¢
with £ = 6.4 um, and we vary the number of degrees of

Comparison of remission enhancement 1 obtained from numerical simulations with analytical predictions based on the

effective Marchenko-Pastur model and the idealized Marchenko-Pastur model (i.e., C; = 0), for various input and output port widths.
All results correspond to a system with transport mean free path £ = 6.4 wm and source-detector separation d = 128 um.

Ny N, N1/N2 C 1/Cy ne ns Effective MP MP
3 57 0.05 0.08 12.7 1.6 1.7 2.4 1.5
3 38 0.08 0.08 12.7 1.7 1.7 2.4 1.6
3 19 0.16 0.08 12.7 1.7 1.8 2.6 2.0
19 38 0.50 0.05 19.4 43 4.6 4.9 2.9
38 76 0.50 0.05 21.7 6.1 6.5 6.2 2.9
38 57 0.67 0.05 21.7 6.4 6.9 6.5 33
19 19 1.00 0.05 19.4 5.1 5.5 5.8 4.0
38 38 1.00 0.05 21.7 7.0 7.4 7.1 4.0
57 57 1.00 0.05 21.8 8.7 9.4 8.4 4.0
76 76 1.00 0.05 20.8 10.1 11.2 10.0 4.0
57 38 1.50 0.05 21.8 9.6 10.2 9.2 4.9
38 19 2.00 0.05 21.7 8.6 9.3 8.6 5.8
57 19 3.00 0.05 21.8 12.1 12.8 11.3 7.5
19 3 6.33 0.05 19.4 11.3 12.0 13.7 12.4
38 3 12.67 0.05 21.7 21.7 22.0 23.0 20.8
57 3 19.00 0.05 21.8 31.8 32.2 31.9 28.7
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freedom at the input and output to scan the relevant interval
of the MP parameter C, (see Table II). The value of C; is
computed using Eq. (G15), originally derived in Ref. [32],
which provides an analytical expression valid in the limit
d> Wy, L.

As shown, the sensitivity enhancement s consistently
exceeds the remission enhancement ng, yet their magni-
tudes remain close to the effective MP model. This is in
agreement with the prediction from Sec. III D that remis-
sion enhancement serves as a proxy for global sensitivity
enhancement. Moreover, the data corroborate the hypoth-
esis that the MP model with C; = 0 indeed sets a lower
bound on enhancement: any increase beyond this base-
line stems from the long-range correlations, whose effect is
captured by the C, contribution. The observed agreement
with theory, despite various finite-size effects, highlights
the robustness of the effective MP model in predicting
remission enhancement in diffusive media. We also note
that the disagreement observed for small N; is due to
the limitation of the Marchenko-Pastur law, which strictly
applies only to matrices of large dimensions.
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