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We propose a scheme to detect the diffusive cloak proposed
by Schittny et al. [Science 345, 427 (2014).]. We exploit
the fact that diffusion of light is an approximation that
disregards wave interference. The long-range contribution
to intensity correlation is sensitive to the locations of path
crossings and the interference inside the medium, allowing
one to detect the size and position, including the depth, of
the diffusive cloak. Our results also suggest that it is possible
to separately manipulate the first- and the second-order
statistics of wave propagation in turbid media. © 2016
Optical Society of America

OCIS codes: (290.1990) Diffusion; (230.3205) Invisibility cloaks;

(030.1670) Coherent optical effects.
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A cloak conceals an object by molding the flow of light in the
surrounding volume [1]. Transformation optics [2,3] has en-
abled one to design artificial materials with spatially varying
permittivity and permeability to achieve the cloaking effect,
see Fig. 1(a). We will refer to this scheme as a ballistic cloak.
A different kind of cloak has been proposed by Schittny et al.
[4,5]—a reflecting object is hidden inside a turbid medium
where the light propagates diffusively, for example via a random
walk, Fig. 1(b). The cloaking effect is achieved by properly in-
creasing diffusivity of the shell D 0. Hiding an object inside a
scattering medium is usually not difficult—it suffices to bury
an object at the depth of several transport mean free paths.
Meanwhile, the opposite task of detecting an inhomogeneity,
such as cancer, is the holy grail of biomedical optics [6].
Notwithstanding, it has been pointed out [4] that the cloaking
effect can be achieved for a shallow object and with a thin cloak
made of a statistically uniform material. Furthermore, the cloak
is omni-directional and broadband. This behavior can be
understood by realizing that the light intensity in turbid media
is governed by the diffusion equation, which is much simpler
than the Maxwell equations for the ballistic cloak. The Laplace
equation describing diffusion is formally equivalent to that of
the electric and magnetic potential in the electro- and magneto-
statics. In the latter context, core-shell structures have been
known to preserve the uniformity of the electric [7] and mag-
netic [8] field lines in both two (cylinder) and three (sphere)

dimensions. For light diffusion, it suggests that the proper
choice of the diffusion constant ensures a uniform intensity
at the output surface of a slab containing the cloak. This result
has been verified [4] and extended to heat cloaking [9,10].
Recently, further study revealed that the diffusive cloak can
be compromised under pulsed illumination [11].

The cloak in Fig. 1(b) is based on the diffusive description of
wave transport. This is an approximation, which does not take
into account wave interference [12,13]. Second-order statistical
properties such as fluctuations and correlations of intensity,
contain information about the wave nature of transport, includ-
ing the location where wave interference took place [14]. We
consider spatial intensity correlations defined as C�r1; r2� �
hδI�r1�δI�r2�i∕hI�r1�ihI�r2�i, where δI�r� � I�r� − h�I�r�i
is the deviation from the mean at point r. Here, h…i denotes
the ensemble average that is accomplished by averaging over the
wavelength of the source. The correlation is dominated by a
short-range (on the order of transport mean free path, l) con-
tribution, C1�r1; r2�, responsible for speckles [15]. We present
a method for detecting the size and location of an object con-
cealed by the diffusive cloak based on analysis of the long-range

Fig. 1. (a) A schematic depiction of light paths in the ballistic cloak
[2,3]. Gray shell depicts the area where material properties have been
modified based on the principles of transformation optics to mold the
flow of light around the obstacle. (b) In turbid media, photons propa-
gate in a random walk-like fashion, with some being reflected (trajec-
tory 1) and some transmitted (trajectory 2). The diffusive cloak
compensates the longer paths around the object by increased diffusiv-
ity (e.g. lower scatterer density) in the surrounding shell. In this work,
we demonstrate that an interference due to trajectories that intersect
throughout the volume (such as 3, 4) can be exploited to detect the size
and position of the embedded object.
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component of the correlation [16–18,19], C2�r1; r2�≃
C�r1; r2� − C1�r1; r2�, measured at the output surface of a slab
of turbid medium.

We consider a coherent plane wave illumination of a slab of
lossless 2D turbid medium of thickness, L, and transport mean
free path, l. Our goal is to compare the intensity and the long-
range correlation in the slab (the reference) to those in a slab
with an embedded reflecting cylinder (case I) and in a slab with
the cylinder surrounded by the diffusive cloak (case II).

The ensemble-averaged intensity of the diffuse light inside
the slab hI�r�i satisfies the quasi-static diffusion equation [12]

D∇2hI�r�i � 0; (1)

with boundary conditions hI�y; 0�i � I0 and hI�y; L�i � 0. D
is the diffusion coefficient and r � �y; z� where y and z are the
transverse and longitudinal coordinates, respectively. At the
output surface z � L, the diffuse light transitions to the free
space propagation. The intensity, IT �y�, transmitted through
the slab as a function of the transverse coordinate, y, can be
found from the continuity of the flux found as J�r� �
−D∇hI�r�i inside the slab and J�r� � cIT �r� in the free space.
Applying this condition at the output surface [13], we find

IT �y� � �1∕c�J�r�jz�L � −�D∕c�∇zhI�r�ijz�L; (2)

where c denotes the speed of light. We note that the more
accurate boundary conditions, which include the so-called
extrapolation length, see for example Sec. A5.2 in Ref. [13],
should only introduce corrections that are smaller by the factor
l∕L ≪ 1.

For the cases with inclusions, we represent the solution as

hI�r�i � hI �0��r�i � hΔI�r�i; (3)

where hI �0��r�i is the solution of the diffusion equation in the
pure slab and hΔI�r�i is the correction to the intensity due to
the inclusion. To obtain an analytical expression for the cor-
rection term, we use the method described in Ref. [20]. For
an object located at rc � �0; zc� inside the medium, the inten-
sity can be described by a multipole expansion, in analogy with
electrostatics [20–22], where the electric potential also satisfies
the Laplace equation. For a lossless medium, the lowest order
dipole term describes the disturbance of the intensity far from
the object. It can be written as

hΔI�r�i � p · ∇rcG
�0��r; rc�; (4)

where G�0��r; r 0� is the Green function for the pure slab, that
is, it is the solution of ∇2

rG�0��r; r 0� � −δ�r − r 0� with zero
boundary conditions at the slab boundaries. The dipole mo-
ment in Eq. (4) is induced by the incident intensity so that
p � −P∇rc hI �0��rc�i. The intrinsic “polarizability” for a reflect-
ing cylindrical inclusion, P�I� � 2πR2

1, can be found by apply-
ing proper boundary conditions at the cylinder surface [22].
Using the same method for the core-shell structure, we find

P�II� � 2πR2
2 ×

�R2
2 � R2

1�∕�R2
2 − R

2
1� − D 0∕D

�R2
2 � R2

1�∕�R2
2 − R

2
1� � D 0∕D

; (5)

where R1;2 are the inner and outer radii of the shell and D 0 is
the diffusion coefficient of the shell. It is implicitly assumed
that the size of the inclusion is much greater than l. In general,
a different boundary condition at the surface of the cylindrical
inclusion would result in a modified Eq. (5), whereas the rest of
our calculations remain unaffected.

Using the Langevin approach [18,23,24], the long-range in-
tensity correlation, C2�r1; r2�, has been related to the ensemble
average intensity, hI�r�i, and the Green function, G�r; r 0�, of
the diffusion equation as

C2�r1; r2� �
4

k0l

R
Ω dr∇rG�r1; r� · ∇rG�r2; r�hI�r�i2

hI�r1�ihI�r2�i
: (6)

In the Langevin approach, proposed in the context of meso-
scopic electron transport by Spivak and Zyuzin [25], the long-
range correlations are obtained from the short-range (Δr ≲ l)
correlations for fluxes. The result in Eq. (6) is due to wave in-
terference of paths with crossings in Fig. 1(b); its wave nature is
seen from the �k0l�−1 factor, where k0 � 2π∕λ is the wave
number. As in Eq. (1), Eq. (6) neglects surface corrections
[23], which are small in the limit L ≫ l considered in this
work. The integration in Eq. (6) is taken over the entire volume
of the system Ω.

In analogy with Eqs. (3) and (4), the Green function in sys-
tems with inclusions can be found as

G�r; r 0� � G�0��r; r 0� − P∇rcG
�0��rc ; r 0� · ∇rcG

�0��r; rc�:
(7)

In what follows, we use Eqs. (3) and (6) to compute the
diffuse intensity and the long-range correlation for the three
cases of interest.

For the pure slab illuminated by a plane wave, the solution
of the diffusion equation is a linear function,

hI �0��r�i � hI �I��z; L�i � I 0�1 − z∕L�: (8)

The Green function can be easily found by. Fourier trans-
formation over the transverse variable [13]

G�0��r; r 0� � −

Z
∞

−∞

sinh�kz<� sinh�k�L − z>��
k sinh�kL� eik�y−y 0�

dk
2π

;

(9)

where z< � min�z; z 0� and z> � max�z; z 0�. The diffuse inten-
sity in the presence of a reflecting cylinder at rc � �zc ; yc ≡ 0�
can be found by substituting Eqs. (8) and (9) into Eqs. (4):

hΔI �I��r�i � −
P�I�I0
4L2

�
sin�π�z − zc�∕L�

cosh�πy∕L� − cos�π�z − zc�∕L�

� sin�π�z − �L − zc��∕L�
cosh�πy∕L� − cos�π�z � zc�∕L�

�
: (10)

This negative correction scales as a ratio between the area,
πR2

1, of the inclusion and square of the slab thickness. It leads to
a shadow directly behind the cylinder that was studied exper-
imentally and theoretically in Ref. [20] where Eq. (10) was also
obtained.

To cloak a cylindrical inclusion, Ref. [4] proposed to modify
the diffusion coefficient in the surrounding cylindrical shell as

D 0∕D � �R2
2 � R2

1�∕�R2
2 − R

2
1�: (11)

Under this cloaking condition, the polarizability in Eq. (5)
vanishes and our method confirms that indeed

hΔI �II��r�i � 0: (12)

For a slab, the long-range correlation is found by substitut-
ing Eqs. (8) and (9) into Eq. (6). For observation points at the
output surface, a compact expression has been obtained [18]:
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C �0�
2 �y1; L; y2; L� �

1

k0l

Z �∞

−∞

dk
2π

−2kL� sinh�2kL�
k sinh2�kL�

× cos�k�y1 − y2��; (13)

which we use as a reference. The presence of a reflecting cyl-
inder can be treated perturbatively, as it introduces corrections
of two types:

ΔC �I�
2 �r1; r2� ≃

1

k0l
P�I�

L2
F�r1; r2� � ΔCEV

2 �r1; r2�: (14)

The first term is the leading term due to hΔI�r�i and
ΔG�r; r 0� in Eqs. (4) and (7), respectively, where P�I�∕L2 is
a small parameter and F�r1; r2� is a function with the ampli-
tude on the order of unity. The second contribution in Eq. (14)
originates from the reduction of the integration area (an exclu-
sion volume) Ω → Ω −Ωc in Eq. (6). This negative contribu-
tion is proportional to the area of the cylinder, Ωc , and can be
estimated as ΔCEV

2 �r1; r2� ∝ �1∕k0l� × �πR2
1∕L2�. Therefore,

although the two terms in Eq. (14) have different origins, they
have comparable amplitudes. The analytical computation of
ΔC �I�

2 �r1; r2� leads to a cumbersome expression, so we defer
the further analysis of this case to the numerical section below.

Surrounding a cylindrical object with a cloak negates its
polarizability, P�I� → P�I I� � 0, when the condition in
Eq. (11) is met. As the result, the first term in Eq. (14), which
is proportional to P�I I�, vanishes, whereas the exclusion volume
in the second term is increased to also include the cloak.
Assuming that the integrand in Eq. (13) varies slowly around
rc , we obtain the following analytical result for observation
points at the output surface of the slab

ΔC �I I�
2 �y1;L;y2;L�� −

1

k0l
πR2

2

L2
π2�L− zc�2

4πL2

×Re
�
cos−2

π�iy1� zc�
2L

cos−2
π�iy2 − zc�

2L

�
:

(15)

When y1 � y2, ΔC �II�
2 �y; L; y; L� represents a correction

to the fluctuations of intensity at the output surface. We find
that the transverse coordinate of the cloaked object corresponds
to the maximum correction (y � yc ≡ 0 in our case). The
depth and the size of the object can be determined from the
absolute value, jΔC �II�

2 �0; L; 0; L�j ≡ δ, and the full width at
half maximum, ΔyFWHM, of the correction: zc∕L � �2∕π�
cos−1�� ffiffiffi

2
p

− 1�1∕2 sinh�πΔyFWHM∕L�� and πR2
2∕L2 �

δ4k0lL2∕�L − zc�2 cos4�πzc∕2L�. Table 1 summarizes the re-
sults of our calculations. It shows that the cloak removes the
correction in the transmitted intensity profile but not in
the long-range correlations. Moreover, the magnitude and the
scaling of the correction is the same with and without the cloak.
To confirm the analytical results derived above, we obtained

the intensity, hI�r�i, and the long-range intensity correlation,
C2�r1; r2�, numerically. First, we used Comsol Mutiphysics
[26] to compute intensity, hI�r�i, and the Green function,
G�r; r 0�, as solutions of the homogeneous diffusion equation
and the diffusion equation with a point source, respectively.
Secondly, we used Eq. (6) to calculate the correlation.

Figures 2(a)–2(c) show the numerically-computed intensity,
hI�r�i, and the corresponding transverse profiles at the output
surface, hI�y; L�i, Fig. 2(d) shows that for: slab geometry (red
lines); the slab geometry with an embedded reflecting cylinder
(black lines); and the slab geometry with an embedded cloaked
cylinder (blue lines). In the latter two cases, the inclusions were
placed in the middle of the slab. For the results in Fig. 2(a)–2(c)
and 2(e)–2(g), the thickness was L∕l � 20.4. The radii of the
cylinder and cloak were chosen as R1∕l � 4.5 and R2∕l �
6.8, such that their ratio is R2∕R1 � 1.5. The diffusion
coefficient of the cloak satisfied Eq. (11).

As predicted analytically by Eq. (10), there exists a diffusive
shadow behind the cylinder, see Figs. 2(b) and 2(d), where the
intensity is reduced. In contrast, the cloaked cylinder has no
shadow, concealing the presence of the cylinder in accordance
with Eq. (12). To verify the theoretical scaling in Eq. (10) (the
solid black line in Fig. 2(d)), we normalized the numerical in-
tensity profiles by πR2

1∕L2. The dashed, dot-dashed, and dotted
black lines are the normalized intensities at the output surface
in the slabs with an embedded cylinder and L∕l � 20, 34 and

Table 1. Summary of the Analytical Resultsa

Slab Cylinder (I) Cloak (II)

hI �0�i ∝ l
L

hΔIi ∝ l
L ×

πR2
1

L2
0

C �0�
2 ∝ 1

k0l
ΔC2 ∝ 1

k0l
× πR2

1

L2 ∝ − 1
k0l

× πR2
2

L2

aThe long-range intensity correlation contains the size and location [see
Eq. (15)] information for the cloaked object.

Fig. 2. Panels (a)–(c) show the diffuse intensity, hI�r�i, computed
by solving the diffusion Eq. (1) numerically for the slab, bare reflecting
cylinder and the cloaked cylinder respectively. Distances are given in
units of l. (d) shows the transmitted intensity, IT �y�, profile at the
output surface, c.f., in Eq. (2). The result for the pure slab, I �0�T �y�,
is used for normalization to demonstrate the agreement with the
theoretical prediction in Eq. (10). The red, black, and blue curves
correspond to the three geometries shown in (a)–(c), respectively.
The dashed, dot-dashed, and dotted black curves correspond to slabs
with L∕l � 20, 34, 41; the solid line is the analytical result in
Eq. (10). Panels (e)–(g) show the amplitude of the long-range intensity
correlation, C2�r; r�, computed numerically from Eq. (6) and normal-
ized to the maximum value in the case of the pure slab. Panel (h) shows
ΔC2�L; y; L; y� using the same color scheme as in (d) and the solid blue
line is the analytical result from Eq. (15).
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41, respectively. The numerical results approach the analytical
solution with an increase of L, when the dipole approximation
used in deriving Eq. (10) is asymptotically satisfied.

In general, the long-range correlation, C2�r1; r2�, depends
on two spatial coordinates, r1 and r2. Figures 2(e)–2(g) depict
the diagonal part, C2�r; r�, computed numerically using Eq. (6).
This quantity corresponds to the non-Rayleigh contribution
to the intensity fluctuation. In the slab geometry, Fig. 2(e),
C2�r; r� depends only on z-coordinate as C2�z; z� ∝ �z∕L�
�1 − 2z∕3L� [27].

In the case of slab with a cylinder, Fig. 2(f ), the long-range
correlation is enhanced. This is because photon path lengths
increase in order to circumvent the cylinder and, thus, the
probability of path crossings, responsible for the correlation,
is also increased. The amplitude of the correction,
ΔC2�L; y; L; y�, computed for slabs of different thickness [black
lines in Fig. 2(h)], scales as ∝ �k0l�−1 × πR2

1∕L2, as predicted
in Table 1. This sets the level of precision for observation of
the discussed effect.

The diminished diffusion coefficient of the cloak, Eq. (11),
reduces the intensity correlation below the reference level of
the pure slab, see Fig. 2(g). This agrees both qualitatively and
quantitatively with the prediction of Eq. (12). Indeed, as shown
in Fig. 2(h), our analytical result describes ΔC2�L; y; L; y�,
computed for slabs of different thickness. Both the profile
and the size scaling of the correction term are in agreement.

In the realistic systems, an absorption tends to suppress the
transmission and its fluctuations. However, the correlation in
Eq. (6) is normalized by the average intensity. This largely
compensates for the exponential attenuation factor associated
with absorption. Hence, the long-range correlations persist at
distances longer than the characteristic absorption length [28],
and we expect that the effect predicted in our work will depend
only weakly on absorption losses. The detailed account of loss
goes beyond the scope of the current work.

Analogy between the diffusion and the electrostatics prob-
lems offers insights into the nature of the diffusive cloak. It
shows that the intensity perturbation due to embedded objects
can be suppressed by cancellation of “multipoles.” In the case
of cylindrical (spherical in 3D) inclusions, a cancellation of
the dominant dipole term leads to cloaking, Eq. (4). Such
an approach is also analogous to ballistic cloaks employing
metamaterials [29].

In this work, we exploit the fact that diffusion is only an
approximate description of the electromagnetic wave transport
in turbid media. The intrinsic wave effects are responsible for
such phenomena as speckles, the intensity fluctuation, and cor-
relation. In particular, the non-local nature of the long-range
correlation offers an opportunity to detect the diffusive cloak.
Crossings of the diffusive paths and the subsequent interference
serve as “beacons”, which give rise to the intensity correlation
detectable at the output surface of the medium. In Ref. [30],
ultrasound focus was used to shift the wavelength of light and,
thus, to temporarily create a source inside a strongly scattering
sample. Such a technique can offer an alternative approach to
detecting the diffusive cloak. However, unlike the long-range
correlation employed in our work, scanning ultrasonic focus
would be a serial process. Lastly, an entirely different kind

of a “beacon”—Cherenkov radiation produced by the fast-
moving charged particles—was proposed for detection of the
ballistic cloak based on transformation optics [31].

Aside from detection of a diffusive cloak, our work also
offers an intriguing possibility to manipulate the second-order
statistics (correlations and fluctuations) independently from the
first-order statistics (average intensity). Finally, the results can
be trivially generalized to 3D systems and for waves of different
nature, including acoustic, electronic, seismic, and others.

Funding. National Science Foundation Directorate for
Mathematical and Physical Sciences (MPS) (DMR-1205223).

Acknowledgment. The authors thank Hui Cao and
Raktim Sarma for numerous insightful discussions.

REFERENCES

1. V. M. Shalaev, Science 322, 384 (2008).
2. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
3. U. Leonhardt, Science 312, 1777 (2006).
4. R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, Science 345,

427 (2014).
5. R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M.

Wegener, Opt. Lett. 40, 4202 (2015).
6. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging

(Wiley-Interscience, 2007).
7. G. W. Milton, The Theory of Composites (Cambridge, 2002), Vol. 6.
8. F. Gömöry, M. Solovyov, J. Šouc, C. Navau, J. Prat-Camps, and A.

Sanchez, Science 335, 1466 (2012).
9. H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Phys. Rev. Lett. 112,

054301 (2014).
10. T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, Phys. Rev.

Lett. 112, 054302 (2014).
11. R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M.

Wegener, Optica 2, 84 (2015).
12. M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod. Phys. 71,

313 (1999).
13. E. Akkermans and G. Montambaux,Mesoscopic Physics of Electrons

and Photons (Cambridge, 2007).
14. R. Berkovits and S. Feng, Phys. Rep. 238, 135 (1994).
15. B. Shapiro, Phys. Rev. Lett. 57, 2168 (1986).
16. M. J. Stephen and G. Cwilich, Phys. Rev. Lett. 59, 285 (1987).
17. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834

(1988).
18. R. Pnini and B. Shapiro, Phys. Rev. B 39, 6986 (1989).
19. A. Z. Genack, N. Garcia, and W. Polkosnik, Phys. Rev. Lett. 65, 2129

(1990).
20. P. N. den Outer, A. Lagendijk, and T. M. Nieuwenhuizen, J. Opt. Soc.

Am. A 10, 1209 (1993).
21. D. Lancaster and T. Nieuwenhuizen, Physica A 256, 417 (1998).
22. J. M. Luck and T. M. Nieuwenhuizen, Eur. Phys. J. B 7, 483 (1999).
23. A. A. Lisyansky and D. Livdan, Phys. Lett. A 170, 53 (1992).
24. J. F. de Boer, M. P. van Albada, and A. Lagendijk, Phys. Rev. B 45,

658 (1992).
25. B. Z. Spivak and A. Y. Zyuzin,Mesoscopic Phenomena in Solids, B. L.

Altshuler, P. A. Lee, and R. A. Webb, eds. (Elsevier, 1991), pp. 37–80.
26. https://www.comsol.com/products.
27. R. Sarma, A. Yamilov, P. Neupane, B. Shapiro, and H. Cao, Phys.

Rev. B 90, 014203 (2014).
28. R. Pnini and B. Shapiro, Phys. Lett. A 157, 265 (1991).
29. A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
30. X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
31. B. Zhang and B. I. Wu, Phys. Rev. Lett. 103, 243901 (2009).

Letter Vol. 41, No. 16 / August 15 2016 / Optics Letters 3863

https://www.comsol.com/products
https://www.comsol.com/products
https://www.comsol.com/products

	XML ID funding

