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Using geometry to manipulate long-range correlation of light inside disordered media
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We demonstrate an effective approach of modifying the long-range spatial correlation for light propagating
inside random photonic waveguides by varying the shape of the waveguide. The functional form of spatial
correlation is no longer universal in the regime of diffusive transport and becomes shape dependent due to the
nonlocal nature of wave propagation. The spatial dependence of the correlation may become asymmetric for light
incident from opposite ends of the waveguide. This work opens the door to control nonlocal effects in mesoscopic
transport of waves by tailoring the geometry of random systems.
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The diffusion model has been widely utilized to describe
wave propagation in disordered media, e.g., light in biological
tissues, ultrasonic waves through cracked metals, and electron
wave functions in disordered conductors. It, however, ignores
the interference of scattered waves, which lead to many promi-
nent phenomena, including Anderson localization, universal
conductance fluctuations, and enhanced backscattering [1–3].
Extensive theoretical and experimental studies in the past three
decades have illustrated that mesoscopic transport of both
classical and quantum mechanical waves is governed by wave
interference effects [4,5].

One important consequence of wave interferences in ran-
dom media is the correlations in the fluctuations of scattered
intensities [6,7]. The interference between waves scattered
along independent paths gives rise to an intensity correlation
on the scale of a wavelength, where one crossing of paths
generates long-range correlation beyond the mean free path,
and two crossings lead to an infinite-range correlation [8,9].

The nonlocal correlations have direct consequences for the
coherent control of light transmission through random media
via wave-front shaping [10], which has advanced rapidly in
the past few years due to potential applications to deep tissue
imaging [11–13]. Indeed, focusing light on a single speckle
simultaneously brightens nearby speckles, hence reducing
the contrast of focusing [14,15]. It has been shown that the
spatial correlation of intensity inside the random medium
[16–20] determines not only focusing contrast but also energy
deposition into the sample [21]. Moreover, the long-range
correlation also affects the enhancement of total transmission
[22] by an optimized wave front with a limited degree of input
control [23]. Therefore, manipulating the nonlocal correlation
can open up a new avenue to controlling waves inside random
media.

Typically, the magnitude of long-range correlation is small,
but it becomes significant in strongly scattering media,
especially when the localization regime [3] is approached
[8,9,24–27]. Experimentally long-range correlations have
been observed not only in space, but also in time, frequency,
angle, and polarization, but most measurements are performed
on transmitted or reflected light, i.e., outside the random media
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[17,19,28–34]. Modifications of the correlations of transmitted
light have been realized with two techniques: (i) varying the
spot size of an incident beam on a wide disordered slab
[16,19,26], and (ii) inserting a constriction, e.g., a pinhole,
inside a random medium [30,35]. However, the possibility
of manipulating long-range correlations inside the random
media has not been explored. This is at least in part due to
the experimental challenge of gaining noninvasive access to
the interior of a random structure where light propagates.

We recently fabricated quasi-two-dimensional random
waveguides to probe the transport inside from the third di-
mension [20,36,37]. This experimental setup has enabled us to
monitor directly how the long-range spatial correlations build
up inside diffusive systems [20]. Moreover, by reducing (or
increasing) the width of a rectangular waveguide, we were able
to enhance (or suppress) the crossing probabilities of scattering
paths throughout the system and, therefore, to modify the
magnitude of the long-range correlation function. However,
the functional form of correlation remained unchanged, as it is
known to be universal for diffusive waveguides with uniform
width [16,18].

In this Rapid Communication, we experimentally demon-
strate an effective approach of tailoring the spatial depen-
dence of long-range intensity correlation functions inside a
random system. This is accomplished by fabricating photonic
waveguides with the cross section varying along their length.
The functional form of the long-range correlation is modified
inside waveguides of different shapes because the crossing
probability of scattering paths is affected nonuniformly in
space. Our approach enables global optimization of nonlocal
effects via system geometry and it is applicable to other types
of waves, such as acoustic waves and matter waves. Besides
the fundamental importance, manipulating the long-range
correlation of waves inside random systems is useful for
imaging and focusing into multiple scattering media using
wave-front shaping [10,21,38] because it affects such aspects
as focusing contrast, degree of control, as well as energy
deposition inside the medium. Therefore, our approach can
provide an additional degree of freedom for controlling wave
transport in scattering media.

To illustrate the effects of waveguide geometry on long-
range spatial correlation, we first present a theoretical anal-
ysis of two-dimensional (2D) disordered waveguides. The
structures have reflecting sidewalls which confine the light
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FIG. 1. (Color online) Calculated spatial long-range intensity
correlation for the constant-width and two types of tapered 2D
random waveguides. The waveguide length L = 80 µm, the transport
mean free path ℓ = 2.2 µm, and the diffusive absorption length
ξa = 26 µm. The waveguide in (a) and (d) has a constant width
W = 10 µm; in (b) and (e) W (z) increases linearly from 10 to
60 µm, while in (c) and (f) W (z) decreases linearly from 60 to
10 µm. (a)–(c) show the spatial distribution of the magnitude of
the long-range correlation function C2(r; r) for three geometries.
(d)–(f) show the long-range correlation function C2(z1; z2) of the
cross-section averaged intensity [42] for the same geometries. The
maximum value is normalized to 1 for comparison. The differences
in these plots reveal that the waveguide geometry has a significant
impact on the magnitude and range of C2.

inside the waveguide where scattering and diffusion take place
within the r = (y,z) plane, with z being the axial direction.
Light transport in the random waveguide is diffusive, and the
nonlocal intensity correlation is dominated by the long-range
correlation C2 [6,24]. The 2D correlation function C2(r1; r2)
between two points r1 = (y1,z1) and r2 = (y2,z2) is calculated
with the Langevin approach [18,19,39–41] (see Ref. [42] for
details).

Let us consider the simplest case of linear tapering where
the waveguide width [W (z)] increases or decreases linearly
along the waveguide axis z. Figure 1 shows the magnitude of
C2, C2(r; r) in three waveguides, with W (z) being constant
[Fig. 1(a)], linear increasing [Fig. 1(b)], or linear decreasing
[Fig. 1(c)]. The 2D distributions of C2 across the waveguides
are clearly different in the three cases, revealing that the
waveguide geometry has a significant impact on the growth
of C2. In Figs. 1(d)–1(f), the correlation functions C2(z1; z2)
of the cross-section averaged intensity [42] further illustrate
the difference: In the waveguide of increasing W (z), the
correlation function stays nearly constant for most values of
z1 and z2, while in the waveguide of decreasing width, the
correlation function exhibits more rapid variation over z1 and
z2. These results suggest that the range of spatial correlation
is increased (or decreased) in the gradually expanding (or
contracting) waveguide, as compared to the waveguide of
constant width.

For a more quantitative comparison, the magnitude of
C2 of the cross-section averaged intensity, i.e., C2(z; z), is
plotted in Fig. 2(a) for six waveguides of the same length but
different geometry. To compare the shapes of these curves,
the maximum value of each curve is set to 1. After the

FIG. 2. (Color online) Comparison of calculated long-range cor-
relation in six waveguides with different degrees of taper: two with
constant widths of 10 µm (solid black line) and 60 µm (dashed-dotted
magenta line); two with width linearly increasing from 10 µm (thick
dashed blue line) or 20 µm (thin dashed blue line) to 60 µm; and two
with width linearly decreasing from 60 to 10 µm (thick dotted red
line) or 20 µm (thin dotted red line). Other parameters are the same
as in Fig. 1. Both (a) C2(z; z) and (b) C2(z; L) clearly demonstrate
that while the functional form of long-range correlation is universal
for uniform waveguides, it is strongly modified in the tapered ones.

normalization, the two curves for the constant widths of 10 and
60 µm coincide and agree to the universal functional form. In
the expanding waveguide, C2(z; z) increases more rapidly at
the beginning and levels off when light diffuses deeper into the
waveguide. This is attributed to the higher crossing probability
of scattering paths near the front end of the waveguide where
the cross section is narrower. As the width increases with z, the
crossing probability is reduced, and the enhancement of C2 is
slowed down. The contracting waveguide exhibits the opposite
trend: The magnitude of C2 grows more quickly in the second
half of the waveguide due to the enhanced crossing probability.
We can further conclude that by enhancing the tapering of the
waveguide cross section, the change in the spatial dependence
of C2 can be made larger.

Figure 2(b) plots the correlation function C2(z; L) for two
points z and L of the cross-section averaged intensity of the six
waveguides studied above. After normalizing the maximum
value to 1, C2(z; L) for the two constant-width waveguides
coincide; in the expanding waveguide the spatial range of
correlation is enhanced while in the contracting waveguide
the range is reduced. To be more quantitative, we find the
correlation length #z from C2(L − #z; L) = C2(L; L)/2.
The constant-width waveguides have the same #z = 48 µm,
whereas the waveguide tapered from 10 to 60 µm has #z =
65 µm and the one from 60 to 10 µm has #z = 27 µm. Hence,
the correlation length inside the random waveguide can be
tuned by geometry.

We note that the change in the functional form of the long-
range correlation function cannot be explained by the effective
conductance model [42]. This model, which was developed
in previous studies of expanding diffusive beams inside
disordered slabs [26,30], can only predict the correlations of
light outside random media. Inside a random medium, the
magnitude of C2 at depth z is not determined simply by the
effective conductance of the waveguide section from 0 to z,
which only reflects the crossing probability of scattering paths
between 0 and z. The diffusive waves that pass through z
may return to it after multiple scattering and crossing in the
section between z and L, thus contributing to C2 at z as well.
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Indeed, the calculated C2 inside the random waveguide of
either constant or varying cross section displays a significant
difference from the prediction of the effective conductance
model [42].

Next, we conduct the experiments. The 2D disordered
waveguides are fabricated in a silicon-on-insulator (SOI) wafer
with a 220 nm silicon layer on top of a 3 µm buried oxide.
The structures are patterned by electron beam lithography and
etched in an inductively coupled plasma (ICP) reactive ion
etcher (RIE). Each waveguide contains a 2D random array of
air holes that scatter light. The air hole diameters are 100 nm
and the average (center-to-center) distance of the adjacent
holes is 390 nm. The waveguide walls are made of a triangle
lattice of air holes (a lattice constant of 440 nm, and a hole
radius of 154 nm) that has a complete 2D photonic band gap
for the in-plane confinement of light.

The monochromatic beam from a tunable cw laser source
(HP 8168F) is coupled into the empty waveguide by an
objective lens of numerical aperture (NA) 0.4. The light is
transverse-electric (TE) polarized, i.e., the electric field is in
the plane of the waveguide. After propagating through the
empty waveguide, the light is incident onto the random array
of air holes inside the waveguide. The front end of the random
array is uniformly illuminated along the y direction. The light
undergoes multiple scattering in the 2D plane of waveguide.
Some of the light is scattered out of plane and imaged by
a 50× objective lens (NA = 0.42) onto an InGaAs camera
(Xeva 1.7-320).

From the optical image, the spatial distribution of light
intensity inside the waveguide I (y,z) is extracted. To smooth
out the short-range fluctuations, I (y,z) is averaged over the
cross section of the waveguide to obtain the cross-section
averaged intensity Iv(z). The spatial intensity correlation
C(z1,z2) is then computed from Iv(z). With the short-range
contribution removed, C(z1,z2) is dominated by long-range
correlation C2. The contribution of C3, which is on the order of
1/g2 (where g is the dimensionless conductance), is negligible
as g ≫ 1 in our waveguides.

The relevant parameters for light transport in the disordered
waveguide are the transport mean free path l and the diffusive
dissipation length ξa . The dissipation results from out-of-plane
scattering, which can be treated similarly as absorption [36].
From the disordered waveguides with constant width, we find
ξa = 26 µm and ℓ = 2.2 µm by fitting the measured Iv(z) and
C(z1,z2 = z1) [42]. The tapered waveguides have the same
density and diameter of the air holes, and thus the values of ξa

and ℓ are identical.
Figures 3(a) and 3(b) are the scanning electron microscope

(SEM) images of an expanding waveguide and a contracting
waveguide. The measured correlation functions for the cross-
section averaged intensity inside the two waveguides, C(z1 =
z,z2 = L), are plotted in Fig. 3(c). The experimental data
clearly show that the dependence of C(z,L) on z is very
different for the two tapered waveguides, which agree well
to the calculation results.

Since the waveguide geometry in Fig. 3(b) is the mirror
image of the one in Fig. 3(a), the C(z,L) for light input from
the left end of the former is equivalent to that with input from
the right end of the latter. As C is dominated by the long-range

FIG. 3. (Color online) Experimental measurement of long-range
intensity correlation inside the tapered waveguides. (a), (b) Top-view
SEM images of fabricated quasi-2D disordered waveguides with
linearly (a) increasing or (b) decreasing width. The width of the
waveguide in (a) increases from 10 to 60 µm, and in (b) it is
opposite. Both have the same length L = 80 µm. Magnified SEM
images show the air holes distributed randomly in the tapered
section of the waveguide and the triangle lattice of air holes in the
reflecting sidewalls. (c) Measured long-range correlation function
for the cross-section averaged intensity C(z,L) inside the tapered
waveguides shown in (a) and (b). The blue circles (green squares)
represent experimental data for the waveguides with increasing
(decreasing) width, and the dashed lines are theoretical results.

correlation function, this result implies C2 becomes asymmet-
ric. Note that the asymmetry exists only inside the random
medium. The C2 for the transmitted light remains symmetric,
as it is determined by the dimensionless conductance g which
has the same value for the two waveguides [42].

The difference in the correlation functions in expanding and
contracting waveguides reveals that C2(r1; r2) is no longer
symmetric because one waveguide is a mirror image of the
other. In other words, the long-range intensity correlation
function for light input from one end of the tapered waveguide
is different from that with input from the other end. This
behavior is distinct from that of the constant-width waveguide
whose two ends are equivalent.

Next, we vary the waveguide cross section in a non-
monotonic manner for further manipulation of the long-
range intensity correlation inside the random waveguide. The
waveguide shown in Fig. 4(a) has width W increasing linearly
in the first half of the waveguide and decreasing in the second
half. This geometry, unlike the tapered waveguides studied
above, is symmetric with respect to the center (z = L/2),
thus the spatial intensity correlation function is the same for
light incident from either end of the waveguide. Figure 4(b)
shows the spatial distribution of light intensity inside the
waveguide with input from the left end. The short-range
intensity fluctuations seen in Fig. 4(b) are smoothed out after
the intensity is averaged over the cross section, leaving only the
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FIG. 4. (Color online) Long-range correlation in a quasi-2D dis-
ordered waveguide whose width varies nonmonotonically. (a) Top-
view SEM image showing the waveguide width W increases linearly
from 10 µm at z = 0 to 60 µm at z = 40 µm and then reduces
linearly down to 10 µm at z = 80 µm. Other structural parameters
are the same as the waveguides in Fig. 3. (b) An optical image of
the intensity of scattered light from the disordered waveguide. The
wavelength of the probe light is 1510 nm. (c) Long-range correlation
function C(z,L) for the cross-section averaged intensities at z and L

in the waveguide shown in (a). C(z,L) displays a sharp change in the
growth rate before and after z passes L/2. (d) Long-range correlation
function for the cross-section averaged intensities at z and L/2 in
the waveguide shown in (a). C(z,L/2) increases monotonically in
the first half of the waveguide and decreases slightly in the second
half. In (c) and (d), solid circles represent experimental data and the
dashed curves are obtained by numerical calculation.

long-range contributions to the intensity correlation function
C(z1,z2). Figure 4(c) plots C(z,L), which increases initially at
a slow rate as z approaches L/2, but turns into a sharp rise once
z passes L/2 and approaches L. This is because the crossing
probability of scattering paths is first reduced as the waveguide
is expanding in z < L/2, and then enhanced in z > L/2 as the
cross section decreases. Therefore, the crossing probability
can be controlled by modulating the waveguide width, which
changes the spatial dependence of long-range correlation
function. Figure 4(d) shows the intensity correlation function
C(z,L/2). It first increases monotonically as z moves from 0
to L/2, and then decreases slightly for z from L/2 to L. The
experimental data (solid circles) are in good agreement to the
theoretical results (dashed lines) in Figs. 4(c) and 4(d).

Finally, we comment that the confined geometry can be
used to tailor the functional form of long-range correlations
not only in real space, but also in momentum space [42]. The
former sets the contrast for light focused inside a scattering
medium by shaping the input wave front [15], whereas the
latter determines the maximum total transmission that can
be achieved with incomplete control of the input wave front
[22]. Therefore, we believe our approach will have immediate
applications to communication and imaging through or into
turbid media [10].
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CALCULATION OF LONG-RANGE INTENSITY
CORRELATION FUNCTION INSIDE RANDOM

MEDIA

Spatial intensity correlation function is defined by

C(r1, r2) =
hI(r1)I(r2)i
hI(r1)ihI(r2)i

� 1. (S1)

It is a sum of three terms: C1 responsible for short-range
correlation, C2 - the long-range correlation, and C3 -
the infinite range correlation. In the regime of di↵usive
transport C1 � C2 � C3 [1] so C3 can be safely ignored.
Expression for spatial long-range correlation function

applicable for di↵usive transport has been derived with
the Langevin approach [2–5] from the ensemble averaged
intensity hI(r)i and Green function G(r1); r2) of di↵usion
equation. For a 2D geometry we find

C2(r1, r2) =
4

k`

Z

⌦
rr0G(r1, r

0)rr0G(r2, r
0)hI(r0)i2dr0

hI(r1)ihI(r2)i
,

(S2)
where G(r, r0) is Green function of di↵usion equation

�rG(r, r0)�G(r, r0)/⇠2
a

= ��(r� r0) (S3)

with G(r, r0)|
@⌦

o

= 0 at open boundaries and
rnG(r, r0)|

@⌦
r

= 0 at the reflecting ones. Such bound-
ary condition neglects surface e↵ects which can also lead
to additional terms in Eq. (S2). They are significant at
0 < z . `, L� ` . z < L, particularly for large index mis-
match between inside and outside of random medium [5].
However, in our system of air holes in dielectric, the ef-
fective refractive index of the random waveguide is less
than that of the empty waveguide. In this case the ef-
fects due to surface reflection for light inside the random
waveguide are not pronounced [6]. Hence our choice of
boundary conditions is reasonable for our samples with
` ⌧ L. Also, hI(r)i can be obtained from G(r, r0) by
considering a uniform source at the left boundary of the
random waveguide. We note that Eq. (S2) is applicable to
any 2D geometry. It reduces to the expression in Ref. [7]
in the quasi-1D limit L � W . The di↵usive waveguides
studied in this work have W (z) ⇠ L and are in the in-
termediate regime between quasi-1D and 2D (L ⌧ W )
limits. In addition, we ignore the renormalization of the
di↵usion coe�cient [8] because the localization e↵ects are
small for the waveguides studied in this work.

We use cross-section averaging to single out the C2

contribution [7]

C(z1, z2) =
h[1/W (z1)]

R
I(r1)dy1[1/W (z2)]

R
I(r2)dy2i

h[1/W (z1)]
R
I(r1)dy1ih[1/W (z2)]

R
I(r2)dy2i

� 1 ' C2(z1, z2). (S4)

Indeed, such integration suppresses the contribution from
the short-range correlation C1, noticeable for |r1�r2| ⇠ `.
This is because the width of the waveguides considered in
our work is always greater that transport mean free path.
Using the definition Eq. (S1) we obtain

C2(z1, z2) =

R R
[(C2(r1, r2) + 1) hI(r1)ihI(r2)i] dy1dy2R

hI(r1)idy1
R
hI(r2)idy2

�1

(S5)
where C2(r1, r2) is given by Eq. (S2) above.

EFFECTIVE CONDUCTANCE MODEL

An e↵ective conductance model has been developed in
the previous studies of expanding di↵usive beams inside
disordered slabs [9, 10]. The long-range intensity corre-
lation function for the transmitted light is determined
by the crossing probability of scattering paths inside the
slab, which is on the order of 1/g, where g is the dimen-
sionless conductance. To account for the e↵ect of di↵use
spreading of the intensity, 1/g is obtained by integrat-
ing over short sections of increasing width at di↵erent
depths inside the slab. While this model can predict the
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long-range correlations of transmitted light, it fails in-
side the random medium. This is because the magnitude
of long-range intensity correlation C2 at depth z is not
determined simply by the conductance of the waveguide
section from 0 to z, which only takes into account the
crossing probability of scattering paths between 0 and
z. The di↵usive waves that pass through z may return
to it after multiple scattering and crossing in the section
between z and L, thus contributing to C2 at z as well.
Let us consider a simple example of a di↵usive waveg-

uide with constant width and no absorption. Since the
dimensionless conductance g(z) decreases linearly with
depth z, C2(z; z) ⇡ 1/g(z) ⇡ z would increases linearly
with z. Figure S1(a) plots the C2(z; z) calculated by the
diagrammatic theory [3, 11], which displays a nonlinear
increase with z. We further compare the C2(z; z) inside
tapered waveguides to the prediction by the e↵ective con-
ductance model. As shown in Fig. S1(b, c), they di↵er
not just quantitatively but also qualitatively. For exam-
ple, the e↵ective conductance model predicts a monotonic
increase of C2(z; z) with z, the actual C2(z; z) in the
tapered waveguides decreases with z near the rear end.
The significant di↵erences confirm that the changes in
the functional form of the C2 inside the random system
cannot be explained by the z dependence of g.

FIG. S1: (Color online) Comparison of calculated long-range
correlation function C2(z; z) for the cross-section averaged
intensity inside di↵usive waveguides (solid line) to the pre-
diction of the e↵ective conductance model (dashed line). (a)
The waveguide has constant width W = 60 µm. (b) The
waveguide width increases linearly from 10 µm to 60 µm. (c)
The waveguide width decreases linearly from 60 µm to 10 µm.
All three waveguides have the same length L = 80 µm. The
e↵ective conductance model fails to predict C2(z; z) inside all
three waveguides.

ADDITIONAL NUMERICAL RESULTS

In Fig. S2, we compare the C2(z; z) inside two tapered
waveguides without absorption. The two waveguides are
mirror image of each other, thus their di↵erence in C2(z; z)
reveals the asymmetry of long-range correlation inside
the random waveguide. Nevertheless they have the same
value of C2 at the output end (z = L), indicating the
asymmetry exists only inside the random system.
In Fig. 2 of the main text, we normalize the long-

range correlation functions in order to compare their

FIG. S2: (Color online) Di↵erence in long-range correlation
function between two di↵usive waveguides with no absorption.
(a) Black dashed curve (solid red curve) represents the calcu-
lated C2(z, z) for the cross-section averaged intensity inside a
random waveguide of width tapered linearly from 10 µm (60
µm) to 60 µm (10 µm). Both waveguides have the same length
L = 80 µm, and the transport mean free path is 2.2 µm. These
two waveguides are mirror images of each other, thus their
di↵erence in C2(z, z) reveals the asymmetry of long-range cor-
relation inside the random waveguide. Nevertheless they have
the same value of C2 at the output end (z = L), indicating
the asymmetry exists only inside the random system.

functional form in waveguides of di↵erent size and ge-
ometry. The results confirm that the functional form
of long-range correlation is modified by tapering of the
waveguide. The deviation from the universal functional
form in the constant-width waveguides is larger when the
degree of tapering is stronger. Figure S3 shows the unnor-
malized C2(z; z) and C2(z;L) in four tapered waveguides
and one constant-width waveguide with absorption. Their
di↵erence again illustrates the impact of the waveguide
geometry on the long-range intensity correlation function
inside the di↵usive waveguide.

FIG. S3: (Color online) Comparison of calculated C2(z, z) (a)
and C2(z, L) (b) in five waveguides with di↵erent degrees of
taper: two with width linearly increasing from 10 µm (thick
dashed blue line) or 20 µm (thin dashed blue line) to 60 µm;
two with width linearly decreasing from 60 µm to 10 µm (thick
dotted red line) or 20 µm (thin dotted red line); and one with
constant width of 60 µm (dash-dotted magenta line). All the
parameters are the same as in Fig. 2 of the main text.

In Fig. S4, we plot the relative di↵erence of C2(z; z)
between the two tapered waveguides where in one the
width increases linearly from 10 µm to 60 µm and in the
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TABLE I: Correlation length of C2(z;L) in di↵usive waveg-
uides of di↵erent geometry

other the width decreases linearly from 60 µm to 10 µm
as shown in Fig. S3. The relative di↵erence is defined
as the ratio of the C2(z; z) di↵erence to the mean. The
di↵erence is as much as 150%, illustrating the power of
manipulating C2 by geometry.

FIG. S4: (Color online) The relative di↵erence in C2(z, z)
between two tapered waveguides where in one the width in-
creases linearly from 10 µm to 60 µm and in the other width
decreases linearly from 60 µm to 10 µm as shown in Fig. S3(a).
The geometry can make a di↵erence as much as 150% in the
long-range correlations.

Figure 2(b) in the main text reveals that in the ex-
panding waveguide the spatial range of C2(z;L) is en-
hanced while in the contracting waveguide the range is
reduced. Table I lists the correlation length �z, defined
as C2(L��z;L) = C2(L;L)/2, for waveguides of di↵er-
ent tapering. It shows a large variation of the correlation
length induced by geometry.

DETERMINATION OF SCATTERING AND
DISSIPATION PARAMETERS OF FABRICATED

SAMPLES

The relevant parameters for light transport in the dis-
ordered waveguide are the transport mean free path l and
the di↵usive dissipation length ⇠

a

. The transport mean
free path l depends on the size and density of the air holes.
The dissipation results from out-of-plane scattering as
the silicon absorption at the probe wavelength is negligi-
ble. This vertical leakage of light can be treated similarly
as absorption and described by the di↵usive dissipation
length ⇠

a

=
p
D⌧

a

, where ⌧
a

is the ballistic dissipation
time and D is the di↵usion coe�cient [8]. The two pa-
rameters, ` and ⇠

a

, were extracted from the fitting of the
measured cross-section averaged intensity, I

v

(z), and the
magnitude of correlations C(z, z) of I

v

(z) in a waveguide
with constant width, W = 60µm and L = 80µm. The nu-
merical calculations were done with the same method as
described in the manuscript and the parameters extracted
from the fitting are ⇠

a

= 26 µm and ` = 2.2 µm. Figure
1(c) and (d) show the experimental data along with the
fitted curves obtained from the numerical calculations.

FIG. S5: (Color online) (a) Top-view scanning electron micro-
scope (SEM) image of a quasi-2D disordered waveguide with
W = 60 µm and L = 80 µm. The waveguide wall is made
of a triangle lattice of air holes which forms a 2D photonic
bandgap to confine light inside the waveguide. (b) An optical
image of the intensity of scattered light from the disordered
waveguide shown in (a). The wavelength of the probe light is
1500 nm. The white boxes mark two cross-sections at depths
z1 and z2 in the disordered waveguide. (c,d) Fitting of experi-
mental data to extract scattering and dissipation parameters.
The solid blue line in (c) represents the experimentally mea-
sured ensemble and cross-section averaged intensity inside the
waveguides shown in (a). The solid blue circles in (d) are the
measured C(z, z) for the cross-section averaged intensity in
the waveguide shown in (a). The dashed red lines in (c) and
(d) are obtained by numerical calculation with parameters
⇠a = 26 µm and ` = 2.2 µm, which have the best fit to the
experimental data.
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The ensemble averaging is done over 4 random config-
urations of air holes and 25 input wavelengths equally
spaced between 1500 nm and 1510 nm. Additional aver-
aging is carried out by slightly moving the incident beam
spot on the input facet of the empty waveguide to gener-
ate di↵erent intensity patterns with uniform envelope at
the front end of the random array.

IMPACT ON LIGHT FOCUSING AND TOTAL
TRANSMISSION ENHANCEMENT

In this section we present two examples to illustrate
the significance of controlling long-range correlations by
geometry. One example is focusing of light into a highly
scattering medium, the other is enhancing total transmis-
sion through a di↵usive medium.

In a numerical simulation of wavefront shaping experi-
ment, we focus the input light to a point inside the random
waveguide by adjusting the relative phase of electric field
in the guided modes of the lead waveguide at the input.
Then we normalize the light intensity at the focal point,
r = (0, z), to 1, and average the intensities at all other
points of the same cross-section (same z) to obtain the fo-
cusing background intensity I

b

. Figure S6 plots I
b

versus
z in two di↵usive waveguides, one tapered from 10 µm to
60 µm, the other from 60 µm to 10 µm. The variation
of the background intensity with depth is dramatically
di↵erent for the two waveguides, and I

b

(z) follows the
spatial dependence of C2 inside these two waveguides as
shown in Fig. S3. Therefore, by tailoring the long-range
correlation function, we are able to tune the focusing
contrast via geometry. Since focusing light into a highly
scattering sample by wavefront shaping opens the possi-
bility of probing inside opaque media, our approach of
controlling the quality of focusing will be important to
applications of sensing and imaging into turbid media.

The wavefront shaping can also enhance the total trans-
mission of light through a di↵usive medium, but the
enhancement factor is very sensitive to the fraction of
input channels that can be controlled [12]. The e↵ective
degree of input control depends on the functional form of
long-range correlation C2 in momentum space, which can
be changed by varying the confined geometry. Numeri-
cally we calculated the maximum transmission T

max

that
can be achieved with incomplete channel control. The
enhancement of total transmission is equal to T

max

/hT i,
where hT i is the mean value of total transmission. Table
II lists T

max

and T
max

/hT i for di↵usive waveguides of
various shape, with only half of the input channels being
controlled. Their values strongly depend on the waveg-
uide geometry due to modification of the functional form
of C2 in momentum space.
Therefore, the confined geometry can be employed to

tailor the functional form of long-range correlations not
only in real space, but also in momentum space. The for-

FIG. S6: (Color online) Focusing light inside a di↵usive waveg-
uide by shaping the input wavefront. The light intensity at the
focal spot, r = (0, z), is normalized to 1. Black dashed curve
(solid red curve) represents the background intensity Ib vs.
depth z inside a random waveguide of width tapered linearly
from 10 µm (60 µm) to 60 µm (10 µm). Both waveguides
have the same length L = 80 µm, and they are identical to
the ones shown in Fig. S3 and S4. Ib(z) follows the spatial
variation of C2, as shown in Fig. S3, in both waveguides.

TABLE II: Enhancing total transmission through di↵usive
waveguides with di↵erent geometry by phase control of half
input channels.

mer sets the focusing contrast inside a scattering medium
by shaping the wavefront of input light [13], whereas the
latter determines the maximum total transmission that
can be achieved with incomplete control of input wave-
front [12]. Therefore, we expect our approach to have
immediate applications to communication and imaging
through or into turbid media [14].
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