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Abstract

We introduce a class of critical states which are embedded in the continuum (CSC) of a one-dimen-
sional optical waveguide array with one non-Hermitian defect. These states are on the verge of being
fractal and have real propagation constants. They emerge at a phase transition which is driven by the
imaginary refractive index of the defective waveguide and it is accompanied by a mode segregation
which reveals analogies with the Dicke super-radiance. Below this point the states are extended while
above it they evolve to exponentially localized modes. An addition of a background gain or loss can
turn these localized states into bound states in the continuum.

1. Introduction

A widespread preconception in quantum mechanics is that a finite potential well can support stationary
solutions that generally fall into one of the following two categories: (a) bound states that are square integrable
and correspond to discrete eigenvalues that are below a well-defined continuum threshold; and (b) extended
states that are not normalizable and are associated with energies that are distributed continuously above the
continuum threshold [1]. This generic picture has further implications. For example, it was used by Mott [2] in
order to establish the existence of sharp mobility edges between localized and extended wavefunctions in
disordered systems. Specifically, it was argued that a degeneracy between alocalized and an extended state would
be fragile to any small perturbation which can convert the former into the latter. Nevertheless, von Neumann
and Wigner succeeded in producing a counterintuitive example of a stationary solution which is square
integrable and its energy lies above the continuum threshold [3]. These so-called ‘bound states in the
continuum’ (BIC) can provide a pathway to confine various forms of waves such as light waves [4-7], acoustic
waves, water waves [8], and quantum waves [9], as much as to manipulate nonlinear phenomena in photonic
devices for applications in biosensing and impurity detection [10]. Interestingly, these ideas have also migrated
to the nonlinear domain [11].

Although most of the studies on the formation of BIC states have been limited to Hermitian systems there
are, nevertheless, some investigations that address the same question in the framework of non-Hermitian wave
mechanics [12]. Along the same lines, the investigation of defect modes in the framework of PT -symmetric
optics [13—15] has recently attracted some attention. On many occasions, however, the resulting BIC states are
associated with very complex potentials which are experimentally challenging.

In this paper we introduce a previously unnoticed class of critical states which are embedded in the
continuum (CSC). We demonstrate their existence using a simple setup consisting of N coupled optical
waveguides with one non- Hermitian (with loss or gain) defective waveguide in the middle. Similarly to BIC they
have real propagation constants; albeit their envelope resembles a fractal structure. Namely, their inverse
participation number 7, scales anomalously with the size of the system N as
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Above ¢, is the wavefunction amplitude at the #nth waveguide. The CSC emerges in the middle of the band

4
b, log (N + 1)

L= N TN+
4, )

(1)

spectrum when the imaginary index of refraction of the defective waveguide e/ becomes|e(’’ | = 2V where Vis
the coupling constant between nearby waveguides. Below this value all modes are extended while in the opposite
limit the CSC becomes exponentially localized with an inverse localization length

El=1n[2V/( |€0(I ) | — (60(1 JY2 — 4V2)]. Thelocalization-delocalization transition is accompanied by amode
re-organization in the complex frequency plane which reveals many similarities with the Dicke super/sub-
radiance transition [16]. We can turn these exponentially localized modes into BIC modes by adding a uniform
loss (for gain defect) or gain (for lossy defect) in the array, thus realizing BIC states in a simple non-Hermitian
setup.

2.Model

We consider a one-dimensional array of N = 2M + 1weakly coupled single-mode optical waveguides. The
light propagation along the z-axis is described by the standard coupled mode equation [17]

., 0w (2)

17\7 + V(l//n+1(z) + t//n_l(z)) + ey, (2) =0 (2)
wheren = —M,---, M is the waveguide number, y;, (z) is the amplitude of the optical field envelope at distance z
in the nth waveguide, Vis the coupling constant between nearby waveguides and 4 = 1/2z where 4 is the optical

wavelength in vacuum. The refractive index ¢, satisfies the relation e, = e(® + i¢\"5,, , where we have assumed

that a defect in the imaginary part of the dielectric constant is placed in the middle of the array at waveguide
n= 0. Below, without loss of generality, we will sete X’ = 0 for all waveguides. Our results apply for both gain
e! < 0andlossyel” > 0 defects.

Substitution in equation (2) of the formyy, (z) = 4% exp (=¥ z/%), where the propagation constant
can be complex, leads to the Floquet—Bloch (FB) [18] eigenvalue problem

pOY =V (g% +45) - edp®s k=1, N. (3)

We want to investigate the changes in the structure of the FB modes and the parametric evolution of ) as the
imaginary part of the optical potential e/" increases.

Before we begin the analysis of the model, we would like to comment on the possibility of realizing such a
system in an experiment. Firstly, due to the Kramers—Kronig relations the real and imaginary parts of the
dielectric constant are not independent of each other; nevertheless it is possible to have the same e{® for the
defective waveguide as well by compensating for the changes in the ¢{®’ at n = 0 by adjusting, for example, the
width of this waveguide. Secondly, optical losses can be incorporated experimentally by depositing a thin film of
absorbing material on top of the waveguide [ 19], or by introducing scattering loss in the waveguides [20].
Optical amplification can be introduced by stimulated emission in gain material or parametric conversion in
nonlinear material [21].

3. Threshold behavior

We begin by analyzing the parametric evolution of s as a function of the non-Hermiticity parameter ¢ " . We
decompose the Hamiltonian H,,,,, of equation (3) into a Hermitian part(Hy ),;;, = —V8,,m+1 — Vym-1anda
non-Hermitian part I;,,, = —ie\"8, 06, . i.e. H = Hy 4+ I'.Fore" = 0 the eigenvalues and eigenvectors of

H = Hyare ¥ = -2V cos (kz/(N + 1))and¢® = 2/(N + 1) sin [k (nz/(N + 1) + #/2)]. In thelimit

N — oo the spectrum is continuous, creatingaband § € [-2V, 2V]that supports radiating states.

AselV increases from zero the propagation constants move into the complex plane. Using, for small values
of e, first order perturbation theory we get that f® ~ ¥ + I} , where I ~ —ie(” /(N + 1). When the
matrix elements of the non-Hermitian part of H become comparable with the mean level spacing A = 2V/N of
the eigenvalues of the Hermitian part H, the perturbation theory breaks down. This happens when
le|/(N + 1) ~ Awhichleads to the estimation|e ! | ~ 2V. In the opposite limit of large|e" |, Hy can be
treated as a perturbation to I'. Due to its specific form, the non-Hermitian matrix /" has only one nonzero
eigenvalue and thus, in the large|e/” |limit, there is only one complex propagation constant corresponding to
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Figure 1. Parametric evolution of the propagation constants %) of an array of N = 49 coupled waveguides with one dissipative

(eiP > 0) defect in the middle, as a function of e{". The phase transition occursate(") = ¢’ = +2V where the defect mode profile
(shown as red dots) switches from non-exponential to exponential decay. The solid red line shows the asymptotic analytical result,
equation (5). Similar behavior (not shown here) but with the #’s in the upper complex plane can be observed for gain " < 0 where
€V = —2V . The green lines indicate modes with real propagation constants which are solutions of the first equation (11). In the case
of even number N they also acquire an imaginary part in the propagation constant, similar to the modes shown in blue.

Re [ ﬁo(k = (N+D72) ] = 0, while all other modes will have zero imaginary component (to first order). The above

considerations allow us to conclude that for|ef” | > 2V asegregation of propagation constants in the complex
plane occurs: below this point all #’s get an imaginary part which increases in magnitude as ~—e_" / N while
after that only one of them accumulates almost the whole imaginary part ~—eS” (independent of N) and the
remaining N — 1approaches back to the real axis as ~—(2V)2/(Ne"). This segregation of propagating
constants is the analogue of quantum optics Dicke super-radiance transition [22] which was observed also in
other frameworks [12, 23-25]. These predictions are confirmed by our numerical data (see figure 1).

4. Thermodynamic limit

In this section we investigate the structure of the FB modes of the system equation (3) in the thermodynamic
limit (N—00) ase” crosses the threshold e . In the case of real defect, an infinitesimal value of it will lead to
the creation of a localized mode (with a real-valued ;. outside of the interval [-2V/, 2V]) [26]. We want to find
out if the same scenario is applicable in the case of imaginary defect. To this end we introduce the ansatz:

b = A exp (=nA) for n >0 @
! A exp (nA) for n<O0.
The continuity requirement of the FB mode at n=0leads to A = A, Furthermore, substitute the above
ansatz into equation (3) for n =0 and n = 1 and after some straightforward algebra we get that
i)
o favr— (V. 4 = gl TPt — 0
Bues = —5,[4V (60 ) i A=-In ~ , (5)

wheres = ¢ /|e{? | denotes the sign of the defect. From equation (5) we find that for|e(” | < ¢ | = 2V the
corresponding propagation constant is real while the decay rateis A = —i arctan ( b / Biet ) i.e. asimple phase.

In other words the FB modes are extended. In the opposite limit of|e " | > |/ |the propagation constant
becomes complex and the corresponding A takes the form

A=1In 2V +isZ (6)

‘eé”‘ - (eé”)z — 4V?

The corresponding inverse localization length is then defined as ! = Re (A) indicating the existence of
exponential localization. Therefore we find that a non-Hermitian defect—in contrast to a Hermitian one (see
for example [26])—induces a localization—delocalization transition at the phase transition pointse!!) = s x 2V
. We emphasize again that this phase transition and the creation of a localized mode occur for both signs of the
non-Hermitian defect and can be induced for both lossy (i > 0) and gain (e/” < 0) defect.

In figure 2 we report the FB defect mode of our system equation (3) for three cases (a) 0 < ¢y < 2V, (b)
€y = 2V and (c) ¢y > 2V, and different system sizes. Note that, although in the latter case the mode is localized
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Figure 2. FB defect mode for various system sizes N = 2M + 1. Left panels report the left part (n < 0) of these modes (the right part
n > 0is the same) by employing the scaling M¢ (x = n/M) while the right panels report the right partn > 0 of these modes without
any scaling. In the former representation an extended state is invariant under increase of the size of the system while in the latter, the
scale invariance is demonstrated for localized modes. Three defect values ofe{” have been used: (upper)0 < e’ = 1.9 V < 2V
where the mode is delocalized; (middle) eé’ ) = 2V where the mode is critical; (lower) eé’ ) = 2.1 V> 2V where the mode is

exponentially localized.

in space, it is not qualified as a BIC since the corresponding propagation constant ;. (see equation (5)) is
imaginary and therefore the mode is nonstationary. Adding, however, a uniform gain (for lossy defect) ;¢ or
loss (for gain defect) -, to the array can turn this state into a BIC with zero imaginary propagation constant.
The latter case is experimentally more tractable since adding a global loss will lead to a decay of all other modes
while the localized defect mode would be stable with a constant amplitude.

5. Properties of the critical state

The existence of the delocalization-localization phase transition posses intriguing questions, one of which is the
nature of the FB mode at the transition point associated with ). In particular, it is known from the Anderson
localization theory, that the eigenfunctions at the metal-to-insulator phase transition are multifractalsi.e. they
display strong fluctuations on all length scales [27-29]. Their structure is quantified by analyzing the
dependence of their moments 7, with the system size N:

2p

2, |V
2
(21
Above, the multifractal dimensions D, # Oare different from the dimensionality of the embedded space d.
Among all moments, the so-called inverse participation number (IPN) 7, plays the most prominent role. It can
be shown that it is roughly equal to the inverse number of non-zero eigenfunction components, and therefore it

is a widely accepted measure to characterize the extension of a state. We will concentrate our analysis on 7, of the

FB mode at the phase transition pointe’.

We assume that the eigenmodes of equation (3) take the form:

)= o« N=0-1Ds (7)

Y

(/J;Ek) = A eid"n 4 B®e=ia"n (1 < 0/n > 0) (8)

whereq® = qr(k ) + iqi(k) , while the associated propagation constants are written in the form
PO = -2V cos (q¥) = ﬂr(k) + iﬁi(k) .Imposing hard wall boundary conditions ¢, ; = ¢p_,,_; = O to the
solutions equation (8) leads to:
B = _AF) eR2ig(M+1) (9)
The requirement for continuity of the wavefunction at n = 0 leads us to the relation
A 4 BH) = AG) 4 B (10)
Substitution of equations (9) and (10) back into equation (3) for n =0, leads to the transcendental equations for

q.
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Figure 3. Scaling analysis of 7, (shown as symbols) of a CSC state versus the system size N. The dot-dashed line corresponds to N~!
dependence. The dashed line is the prediction of equation (1) which contains alogarithmic correction. In the inset we plot the same
datain a different fashioni.e.In 7, + In (N + 1) versusInln(N + 1). The straight line with a unit slope confirms the existence of the
logarithmic dependence as indicated by equation (1).

(I

sin [(M + 1)gq] =0; or cot [(M + 1)g] sin (gq) =i;0—V. (11)
We are interested in the structure of the FB mode in the middle of the band corresponding to Re (#) = 0. For
simplicity of the calculations we assume below that M + 1is odd and also recall that the total size of the system is
N = 2M + 1.Imposing the condition Re () = 0 in the second term of equation (11) we get thatg, = —s7/2
while the imaginary part g; satisfies the equation

et
stanh[(M+ l)qi]cosh(qi) = v (12)

We will look for a stationary solution at the phase transition pointe)”) = s 2V with B; = 0 (or equivalently
g; = 0)inN — oo limit that also satisfies the conditiong; X (M + 1) ~ ¢;N — oo.Inequation (12) we now

perform small g, expansion incosh (g;) = 1 + qi2 / 2andlarge(M + 1)g; expansion in

_ exp (M+1)g;) —exp (= (M+1)gq,) - 2
tanh [(M + 1)g;] = o (T D) Tep o g S L~ 2exp (= (N+ 1)q) » 1 — g/ /2.Inthelarge M-

limit the solution of the last transcendental equation is
5 In(N+1)
i N+1

(13)

Substituting back in the expression for the propagation constant we get
p = =2V cos (—sn/2 + ig;) = —s 2V ig; which in thelarge N (M)-limit resultsin # = 0. Finally, substituting
equations (9) and (13) back into equation (8) we get that

(—s )l

(N + 1)2|n|/(N+1)' (14)

¢, exp[i( —sn/2 + ig; ) |n|] =
The FB state described by equation (14) is not exponentially localized neither it is extended. It rather falls into an
exotic family of critical states and it can quantify better via the IPN Z,. Using equation (7) for p =2 it is easy to
show that the IPN of the FB mode of equation (14) is given by equation (1). Furthermore, this scaling relation is
not consistent with the standard power law equation (7) characterizing self-similar (fractal) states. Rather we
have an unusual situation of a critical state that is on the verge of being fractal. To our knowledge such anomalous
scaling has been discussed only in the completely different context of Hermitian random matrix models [30] or
modulated (graded) systems [31, 32] and were never found to be present in any physical system. Thus our simple
setup constitutes the first paradigmatic system where these CSCs can be observed. In figure 3 we report the
scaling of T, versus the system size at the phase transition pointe!’ = 2V as found by solving equation (3)
numerically. We see that the data follow nicely the prediction of equation (1).

We conclude this section by noting that for odd N considered above, some of the FB modes can have (due to
symmetry) a nodal point at the center of the array where the non-Hermitian defect is placed, see green symbols
in figure 1. Therefore they do not overlap with the defect and thus have real propagation constants. The latter are
solutions of the first equation of (11). In the case of even N, all modes of the system are calculated by an equation
similar to the second equation of (11) and thus they all have imaginary propagation constants. This is due to the
fact that they have an appreciable component at the middle of the array where the non-Hermitian defect is
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placed. The rest of the analysis associated with the CSC remains qualitatively the same. We also repeated our
calculation for the periodic boundary conditions to confirm that the scaling properties for the critical state
remain unchanged in the N — oo limit.

6. Periodic perturbation
In this section we demonstrate that the critical nature of the defect state is not a consequence of the degenerate
band-edge [33] being present in the case of the tight-binding system of equation (3). This can be achieved by
introducing an on-site potential ¢ X = ¢{® (—=1)" which removes the degeneracyat # = 0. Therefore, the new
tight-binding equation is:

POGP ==V (5, + 6P ) = (e (=1 + ieN500) 40 (15)

We propose the following ansatz for odd/even (denoted by superscript o/e) waveguide numbers:

¢r5k)(o/e) — A(—)(o/e) eiq”‘)n + B(—)(o/e)e—iq(k)n(n < 0)

¢ﬂ(k)(o/€) — A(+)(o/e) eiq“‘)n + B(+)(a/e)e—iq(k)n(n > 0) (16)

In the absence of imaginary defects we get the following dispersion relation:

po = (—l)b\/(eém )2 + 4V? cos?q®, (17)

where bistheband index. b=1forRe[f] < 0andb=2forRe[f#] > 0. Therefore, the degenerate energy at
zero is shifted into the positive or negative branch.

In the presence of a defect, and after taking into account the hard wall boundary conditions
(¢ 1&‘) i"i = ¢_(11‘\2[(‘i) | = 0) and continuity at n =0, we get two discrete equations for the complex propagation
constant g:

sin [(M + 1)gq]=0; or

2
o e+ (—l)b\/(eéR)) + 4V? cos’q
i€y

cot [(M + 1)q] sin (q) = T (18)

2V cosq

The above equations are consistent with the results presented in the previous section at the limite(X — 0.

In the localized regime (|ef” | >|el|), we getcot [(M + 1)gq] = i. By replacing this expression into the
second term of equation (18), we derive the following cubic relation for x = tan g:

2 2
2eiPelDx® + ((65”) - 4V2)x2 + 2R ePx + (66”) =0. (19)

The above algebraic equation has three roots. Depending on the value of ("’ these roots can be either real or
complex. In the former case (i.e. x, and therefore g, being real) the associated mode is extended, while in the
latter one (i.e. x, and therefore g, being complex) the associated mode is localized. The transition between these

types of modes occurs at e’

((4V2 — ey )3 = 8(e®) (—2V4 +10V2(e) + (eD) + 2(el) (e )2> (20)

(R)
0

and is given as a solution of the following equation:

Furthermore, it can readily be confirmed that, as expected, for (X — 0,¢'! approaches 2.

The associated energy 1, of the defect (localized) mode is found after substituting the expression for el

from equation (20), into equation (18). This allows us to evaluate g’ which can then be substituted into
equation (17) in order to get an expression for /3. The obtained dependence of Re [, ] on eO(R) isshownin

figure 4 by the red line. The values of Ir [, ] are denoted by dots and numbers. We note that the real part of the
propagation constant Re [£3, ] is insensitive to the sign of (.

Next, we investigate the scaling behavior of the defect mode at the transition pointe.” . Following the same
r(”) + ig;, where we assume that (M + 1)g;, = coand
g; is asmall quantity. Substituting back to the transcendental equality of equation (18) and expanding each term

up to first order in g; we eventually get:

argument as used in the previous section, we write g as g
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Figure 4. Band structure (green shadowed array) of the model equation (15) versus (. The red line indicates the trajectory of the
defect eigenmode as (P increases. The red dots and the associated numbers are indicative values of the critical [e{” | (for the specific
€®) above which a defect mode is created.

In(N+1)

. 21
q N+l (21)

Considering the fact that 7, ~ g, it can be deduced that the second moment of the defect mode for the modified
model scales anomalously as indicated in equation (1) of the main text. Hence, we conclude that the logarithmic
scaling of IPR is not a consequence of degenerate band-edge in the Anderson model at # = 0.

7. Conclusions

In conclusion we have investigated the structure of non-Hermitian defect states as a function of the defect
strength. We have found that these states experienced a phase transition from delocalization to localization as
the imaginary part of the refractive index in the defect waveguide approaches a critical value. At the transition
point the inverse participation number of this mode scales asIn (N)/N indicating a weak criticality. This phase
transition is accompanied by a mode re-organization which reveals analogies with the Dicke super-radiance.
The transition survives periodic pertubations in the refractive index in the waveguide array and the anomalous
logarithmic behavior of the inverse participation ratio at the critical pointis preserved. It will be interesting to
investigate whether this behavior survives in higher dimensions and other types of configurations including
disordered [34—36] and continuous [37, 38] models.
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