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MAPPING FROM 3D TO 2D WAVE EQUATION

The random waveguide, c.f. Fig. [1] in the main text,
is made of perforated silicon membrane, sandwiched be-
tween air and silica. The dielectric constant of this 3D
system is ε(x, y, z) = [n(x, y, z)]2, and the wave equation
is

{
∇2

3D + [kn(x, y, z)]
2
}
E(x, y, z) = 0. (1)

The transformation of the above wave equation to 2D
wave equation involves two assumptions – effective index
and effective absorption approximations.

Because the refractive index n(x, y, z) of our system is
not factorizable, the above wave equation does not sep-
arate exactly into a normal (x-axis) and in-plane (y, z-
axes) equations. The transformation from the 3D wave
equation to a 2D wave equation for y, z coordinates is
known as effective index approximation. This involves
replacing n(x, y, z) by an effective index ñ that depends
only on y, z. The 2D wave equation is{

∇2
2D + [kñ(y, z)]

2
}
Ẽ(y, z) = 0. (2)

The value of ñ(y, z) is chosen to be one within the air
holes and nd in the dielectric. The value of nd can be
found from a procedure described e.g. in Ref. [1]. The
most important limitations of this approach are:
(i) ñ varies with frequency even if n(x, y, z) is indepen-
dent of frequency;
(ii) ñ is a real number and it does not account for the
out-of-plane leakage of light from the membrane.

(i) is not an issue in our experiments using continuous-
wave monochromatic light.

(ii) can be mitigated with another approximation:
the out-of-plane scattering loss can be accounted for by
adding an imaginary part to the effective dielectric con-
stant, ε̃(y, z) = (1 + iα)[ñ(y, z)]2, where α is the effec-
tive absorption coefficient. For a periodically perforated
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membrane, the effective absorption is not always justi-
fied because the out-of-plane loss, unlike the absorption,
can be a non-local process. This is because long-range
correlation of light fields in a periodic array of scatterers
makes the waves scattered from different locations phase
coherent and they interfere in the far field. However, in a
random array of scatterers, the fields are correlated only
within a distance of the order one transport mean free
path ` [2, 3], and waves from different coherent regions
` × ` have uncorrelated phases. Since there are a large
number of such coherence regions `× ` in our waveguides
W ×L, the overall leakage may be considered incoherent
and treated effectively as absorption.

CALCULATION OF POSITION-DEPENDENT
DIFFUSION COEFFICIENT D(z)

In the ab-initio numerical simulation, we consider a
monochromatic scalar wave E(r)e−iωt propagating in a
2D volume-disordered waveguide of width W and length
L � W . The wave field E(r) obeys the 2D Helmholtz
equation: {

∇2 + k2 [1 + δε(r)]
}
E(r) = 0. (3)

Here k = ω/c is the wavenumber and δε(r) = (1 +
iα)δεr(r), where δεr(r) describes the random fluctuation
of the dielectric constant, and α > 0 denotes the strength
of dissipation. The system is excited from one open end
(z = 0) of the waveguide (extending from z = 0 to z = L)
by illuminating each of the guided modes with a unit flux.
The wave field E(r) throughout the random medium is
computed with the transfer matrix method for a given
realization of disorder[4]. From E(r) we calculate the
energy density W(z) and the flux Jz(z) along the z axis
(parallel to the waveguide axis). These two quantities
are averaged over the cross section of the waveguide at
each z and give the diffusion coefficient:

D(z) = −〈Jz(z)〉/ [d〈W(z)〉/dz] , (4)

where the averages 〈. . .〉 are taken over a statistical en-
semble of 106 disorder realizations.

In order to compare our numerical results forD(z) with
the self-consistent theory of localization, we need to have



2

the value of the diffusion coefficient without renormal-
ization due to the wave interference effects D0 = v`/2.
To estimate the transport mean free path ` in our model
we perform a set of simulations for different waveguide
lengths L, exploring both the regime of diffusion L < ξ
and that of Anderson localization L > ξ. We computed
numerically the conductance g as the sum of transmission
coefficients from all incoming to all outgoing waveguide
modes. The dependencies of the average 〈g〉 and vari-
ance var(g) on L are fitted by the analytical expressions
obtained by Mirlin in Ref. [5] using the supersymmetry
approach with ` being the only fit parameter. To find the
diffusive speed v, we use the definition of diffusive flux

in the forward (+z) direction J
(+)
z (z) and the backward

(−z) direction J
(−)
z (z) with respect to the propagation

direction[6]

〈J (±)
z (z)〉 = (v/π)〈W(z)〉 ∓ (D(z)/2)d〈W(z)〉/dz. (5)

Combining the two components, we find the diffusive
speed

v = 2
(
〈J (+)

z (z)〉+ 〈J (−)
z (z)〉

)
/〈W(z)〉. (6)

Dashed lines in Fig. 1 depict D(z) found in equation (4)
normalized by D0.

In the dissipative random waveguides, the charac-
teristic dissipation time τa is determined numerically
using the condition of flux continuity d 〈Jz(z)〉 /dz =
(1/τa) 〈W(z)〉. The desired diffusive dissipation length
ξa0 =

√
D0τa can be obtained by the proper choice of α

in equation (3).

SELF-CONSISTENT THEORY OF
LOCALIZATION

The self-consistent theory starts with the Green’s func-
tion G(r, r′) of equation (3) with δε(r) = δεr(r) + iα.
In a random waveguide, the disorder-averaged function
Ĉ(r, r′) = (4πWD0/cL)〈|G(r, r′)|2〉 obeys self-consistent
equations in a dimensionless form[4, 7]:[(

L

ξa0

)2

− ∂

∂ζ
d(ζ)

∂

∂ζ

]
Ĉ(ζ, ζ ′) = δ(ζ − ζ ′), (7)

1

d(ζ)
= 1 +

2L

ξ
Ĉ(ζ, ζ), (8)

where d(ζ) = D(ζ)/D0 and all position-dependent quan-
tities are functions of the longitudinal coordinate ζ =
z/L. The quantity Ĉ(ζ, ζ), which renormalizes the diffu-
sion coefficient, is proportional to the return probability
at ζ. Assuming first that d(ζ) ≡ 1, equations (7,8) are
solved by iteration with the boundary conditions:

Ĉ(ζ, ζ ′)∓ z0
L
d(ζ)

∂

∂ζ
Ĉ(ζ, ζ ′) = 0 (9)

Figure S 1: Optical measurement setup: (a) Schematic of ex-
perimental setup for measuring light transport inside the ran-
dom waveguide. (b) Photograph of the experimental setup.
(c) Schematic of the sample layout showing the ridge waveg-
uides coupling the probe light from the edge of the wafer to the
random waveguides with photonic crystal sidewalls. (d) Lay-
out of the fabricated structures studied experimentally.

at ζ = 0 and ζ = 1. The z0 = (π/4)` is the so-called
extrapolation length[6].

After the self-consistent solution of equations (7-9) has
been found, we find the intensity distribution inside the
sample by replacing the delta-function source in equa-
tion (7) with (L/`) exp [−ζ/(`/L)]. This source term rep-
resents the exponential attenuation of the incident bal-
listic signal.

EXPERIMENTAL DETAILS

Optical measurement setup: The experimental setup for
optical characterization is shown in Fig. S1(a). We used a
single-mode polarization-maintaining fiber to deliver the
probe light into a silicon ridge waveguide on a SOI sub-
strate. The fiber was tapered at the end to focus the
laser beam to a spot of diameter ∼ 2.5 µm at the edge
of the wafer. The ridge waveguide had the same width
as the random waveguide it was connected to, which var-
ied from 5 micron to 60 micron [Fig. S1(b)]. However,
the height of the silicon waveguide was merely 220 nm, so
some of the input light did not couple into the waveguide;
instead it propagated above or below the waveguide. To
avoid such stray light, the ridge waveguide was tilted by
30 degrees with respect to the incident direction of the
light from the fiber (approximately normal to the edge
of the wafer). The ridge waveguide was made 2.5 mm
long, so that the random waveguide structure is far from
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the direct path of the stray light. In addition, uniform
illumination of the front surface of the random structure
inside the waveguide was ensured by positioning the ta-
pered fiber approximately at the center of the input facet
of the ridge waveguide. The spatial distribution of light
intensity over the sample was imaged by an objective lens
onto an IR CCD camera [not shown in Fig. S1(a)].
Design of photonic crystal walls for 2D waveguides: The
triangular lattice of air holes that form the sidewalls
of the random waveguide were designed to have a 2D
photonic bandgap for TE polarized light in the wave-
length range of 1450 nm – 1550 nm. The photonic band
structure was calculated with the plane wave expansion
method[8].
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