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Abstract: We develop and experimentally verify a theory of evolution
of polarization in artificially-disordered multi-mode optical fibers. Starting
with a microscopic model of photo-induced index change, we obtain the
first and second order statistics of the dielectric tensor in a Ge-doped
fiber, where a volume disorder is intentionally inscribed via UV radiation
transmitted through a diffuser. A hybrid coupled-power & coupled-mode
theory is developed to describe the transient process of de-polarization
of light launched into such a fiber. After certain characteristic distance,
the power is predicted to be equally distributed over all co-propagating
modes of the fiber regardless of their polarization. Polarization-resolved
experiments, confirm the predicted evolution of the state of polarization.
Complete mode mixing in a segment of fiber as short as ∼ 10cm after 3.6dB
insertion loss is experimentally observed. Equal excitation of all modes in
such a multi-mode fiber creates the conditions to maximize the information
capacity of the system under e.g. multiple-input-multiple-output (MIMO)
transmission setup.
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1. Introduction

The last decade has witnessed a shift in the general perception of disorder in optical systems
from a nuisance [1] to an exploitable feature which may enable some unique functionalities
[2–6]. An ability to control light propagation in complex media [5] via spatial light modulator
(SLM) exposed a deep connection to the problem of time reversal in acoustics [7] and renewed
interest in such systems. SLM has also been used to manipulate certain aspects of propagation,
e.g. to compensate modal dispersion, in multi-mode optical fibers MMF [8,9].

Mutiple-input-multiple-output (MIMO) approach [10–12] has become the backbone of the
wireless IEEE 802.11n standard for local area networks (LANs). It takes advantage of the dif-
ferences in propagation from multiple sources to multiple receivers to maximize the bandwidth
of the transmitted signal – with the theoretical limit of improvement over single-input-single-
output (SISO) being proportional to number of sources or receivers, whichever is smallest [11].

A similar approach has also been applied to MMF [13]. It relies on the modal-coupling
diversity (MCD) to take advantage of all available degrees of freedom in a MMF. Importantly,
the method does not require orthogonal coupling to the individual modes of the fiber and its
effectiveness is not degraded by inter-mode coupling in the fiber [14, 15]. To maximize MCD,
the mode coupling coefficients in the fiber link should be sufficiently random – Gaussian [11,
16]. In conventional fibers, meeting this condition requires sufficiently long segments of MMF
because concentration of imperfections is low. In the most disordered case of plastic optical
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fibers (POF) the characteristic length for mode mixing is on the order of ∼ 10m [2]. Improving
the efficiency of inter-mode coupling and randomization by increasing the concentration of
defects has the drawback of enhanced losses.

In this work we investigate both theoretically and experimentally photo-sensitive multi-mode
Ge-doped silica fibers with artificially induced disorder. Our thorough account of the photo-
induced birefringence allows us to develop a theory which captures the effect of direct cou-
pling between two sets of modes with both orthogonal polarizations. Experimental observa-
tions demonstrate that the transition to the fully mode-mixed state occurs in very short fibers of
length ∼ 10cm. Because of such short length of the fiber, other sources of birefringence can be
neglected. Furthermore, it should be possible to mitigate the trade-off between strength of inter-
mode coupling and the radiative losses by controlling spatial correlations of the disorder [17].

Coupled-power theory [18] has been widely used to describe the modal distribution, as well
as the temporal characteristics of pulse propagation and pulse bandwidth [2, 19, 20]. However,
power-coupling models fail to properly describe the effect of birefringence because the lat-
ter affects the amplitudes and phases of the cross-polarized modes. Here we develop a hybrid
coupled-power/coupled-mode approach which shows that the limiting modal distribution is uni-
form – all co-propagating modes (including those with orthogonal polarization) of the MMF are
statistically equally excited. This implies optimum MCD to maximize the information capacity
in transmission through MMF. Moreover, the developed formalism allowed us to describe and
interpret a crossover from an initial mode distribution to the limiting one.

2. Properties of photo-induced disorder

2.1. Microscopic model of birefringence

Photo-sensitivity of the germano-silicate fibers [21] allows one to modify the refractive index in
the core of optical fibers. This effect has been used to laser-write a wide variety of fiber gratings
[22]. Doping by germanium atoms leads to oxygen-deficient defect formation. Illumination by
a UV source with a sufficiently short wavelength breaks these bonds that, in turn, modifies the
absorption spectrum of the glass. The real part of the refractive index is changed through the
Kramers-Kronig relation.

It has also been observed that under certain conditions the photo-modified fibers become
birefringent. Three contributions to photo-induced birefringence have been identified: (i) a con-
tribution which depends on the polarization of the UV laser source [23, 24]; (ii) a contribution
due to spatial non-uniformity of the incident UV beam [25] ; and (iii) a contribution related to
modification in glass stresses [26]. Commonly, the first contribution is the dominant one. A de-
tailed microscopical model describing the dependence of the birefringence on the polarization
state of the UV radiation was developed Kamal and Russell in Ref. [23].

The Kamal-Russell model relates the macroscopic change in the local susceptibility ten-
sor Δχi j (�r) to the change in the volume density of the highly directional breakable bonds
Δρ (�r,θ ,φ) in the germano-silicate glass as

Δχi j (�r) = αb

∫
Δρ (�r,θ ,φ)uiu jdΩ, (1)

where αb is the polarizability of the bond,�u = (sinθ cosφ ,sinθ sinφ ,cosθ) define the orienta-
tion of the bond, and the integral is taken of over all solid angles Ω. The process of severing the
bond is described by the Fermi golden rule with the dipole – electric field interaction Hamilto-
nian. The change Δρ (�r,θ ,φ) in the initially isotropically uniform distribution ρ/(4π) is related
to the cumulative effect of UV radiation during the time of the exposure. Photo-induced change
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in the susceptibility tensor is then related to the UV electric fields

Δχxx (�r) = C0

[
3
∣∣∣E(UV )

x (�r)
∣∣∣2 +

∣∣∣E(UV )
y (�r)

∣∣∣2 +
∣∣∣E(UV )

z (�r)
∣∣∣2
]
, (2)

Δχxy (�r) = C0

[
E(UV )

x (�r)E(UV )∗
y (�r)+E(UV )∗

x (�r)E(UV )
y (�r)

]
, (3)

where C0 encompasses all material-related parameters, not essential to the further discussion.
The remaining components of the tensor are obtained from Eq. (2) and Eq. (3) via permutation
of the subscripts. Using this result, in the next section we obtain the relationship between statis-
tics of the speckle pattern of the incident UV light and the spatial correlation of the elements of
the dielectric tensor.

Fig. 1. UV irradiation geometry is shown. Expanded unpolarized λUV = 244nm UV light
from an Ar laser illuminates an elongated area on the surface of a diffuser. A complex
interference pattern is incident onto the core of the Ge-doped photosensitive fiber.

2.2. Statistical properties of the UV light used to fabricate the disorder

As we will see in the following sections, to describe coupling between different modes of our
disordered fiber we need first to determine the spatial correlations of the random fluctuations of
the dielectric tensor around its average n2

core +
〈
Δχi j(�r)

〉
〈
δεi j(�r)δεi j(�r

′)
〉≡ 〈(

Δχi j(�r)−
〈
Δχi j(�r)

〉) · (Δχi j(�r
′)−〈

Δχi j(�r
′)
〉)〉

. (4)

Equation (2) and Eq. (3) relate the change of susceptibilities to the electric field used to fabricate
the pattern. Hence the problem of obtaining correlators in Eq. (4) reduces to the problem in
determining correlations between UV fields. Below, we proceed to determine the statistical

properties of E(UV )
i (�r).

Vector components of the UV electric field produced by the diffuser, c.f. Fig. 1, can be found
with the help of Rayleigh-Sommerfeld vector diffraction theory [27]:

E(UV )
x (�r) = −D+ y

2π

∫ ∫
ikexp [ikR]

R2 E(UV )
x̃ (x̃, z̃)dx̃dz̃, (5)

E(UV )
y (�r) =

1
2π

∫ ∫
ikexp [ikR]

R2

(
E(UV )

x̃ (x̃, z̃)(x− x̃)+E(UV )
z̃ (x̃, z̃)(z− z̃)

)
dx̃dz̃, (6)
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In these equations we adopt the following notations: (x̃, z̃) are coordinates in the plane of the

diffuser;�r = (x,y,z) are coordinates in the fiber core; E(UV )
x̃ (x̃, z̃) and E(UV )

z̃ (x̃, z̃) are two com-

ponents of the UV electric fields in the plane of the diffuser; E(UV )
i (�r) are the UV field compo-

nents in the fiber core; R denotes the distance from (x̃, z̃) to�r; and k = 2π/λUV . Expression for

E(UV )
z (�r) is analogous to Eq. (5).
We assume that the fields originating at the diffuser are δ -correlated Gaussian [28]:

〈
E(UV )

x̃ (x̃, z̃)E(UV )∗
x̃ (x̃′, z̃′)

〉
=
〈

E(UV )
z̃ (x̃, z̃)E(UV )∗

z̃ (x̃′, z̃′)
〉
= (1/2)I(UV )

0 (x̃, z̃)κδ (x̃− x̃′)δ (z̃− z̃′), (7)〈
E(UV )

x̃ (x̃, z̃)E(UV )
x̃ (x̃′, z̃′)

〉
=
〈

E(UV )
z̃ (x̃, z̃)E(UV )

z̃ (x̃′, z̃′)
〉
=
〈

E(UV )
x̃ (x̃, z̃)E(UV )

z̃ (x̃′, z̃′)
〉
= 0, (8)

where I(UV )
0 (x̃, z̃) = (πLxLz)

−1 × exp
[−x̃2/L2

x − z̃2/L2
z

]
is a Gaussian beam profile, expanded

along z-axis, which illuminates the diffuser. Using Eq. (5), Eq. (6), Eq. (7) and Eq. (8) we obtain

〈
E(UV )

x (�r)E(UV )∗
x

(
�r′
)〉

=
κ(D+ y)(D+ y′)

λ 2
UV

∫ ∫
exp [ik(R−R′)]

R2R′2 I(UV )
0 (x̃, z̃)dx̃dz̃. (9)

The correlation between the other components of the field can be obtained analogously. Because

E(UV )
y (�r) depends on the both E(UV )

x̃ (x̃′, z̃′) and E(UV )
z̃ (x̃′, z̃′) in Eq. (6),

〈
E(UV )

x (�r)E(UV )∗
y (�r′)

〉

and
〈

E(UV )
y (�r)E(UV )∗

z (�r′)
〉

remain non-zero.

Fig. 2. Correlations between field components of the UV light used to fabricate disorder
in the core of the photo-sensitive optical fiber. Equation (9) and similar expression for
the other field components, originating from Rayleigh-Sommerfeld integrals in Eq. (5)
and Eq. (6), are evaluated numerically under the experimentally relevant conditions –

Lx = 3mm, Lz = 5mm, D = 5mm. Not shown are
〈

E(UV )
x (�r)E(UV )∗

z (�r′)
〉

which vanishes

completely and
〈

E(UV )
z (�r)E(UV )∗

z (�r′)
〉

which is identical to
〈

E(UV )
x (�r)E(UV )∗

x (�r′)
〉

.

Analytical evaluation of Eq. (9) and the corresponding expressions for the other combinations
of the field components proves to be challenging under the experimentally relevant conditions,
c.f. Ref. [17]. Indeed, the mathematically convenient paraxial approximation is not well justi-
fied because the dimensions of the illuminated spot, Lx and Lz, are comparable to the distance to

fiber core D. Furthermore, under this approximation E(UV )
y (�r) vanishes entirely and the effect
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of cross-polarization mode coupling is washed out even though the fiber becomes birefringent

because of the strong E(UV )
x (�r).

To circumvent the limitations imposed by the paraxial approximation in Eq. (9), we
evaluated the integrals numerically. The results shown in Fig. 2 demonstrate that photo-

induced speckle pattern is highly anisotropic. Moreover, correlators
〈

E(UV )
x (�r)E(UV )∗

y (�r′)
〉

and〈
E(UV )

y (�r)E(UV )∗
z (�r′)

〉
field components have y− z and x− y nodal planes respectively due to

symmetries in the integral in Eq. (6) defining y-component of the field.
〈

E(UV )
x (�r)E(UV )∗

z (�r′)
〉

vanishes completely and correlator
〈

E(UV )
z (�r)E(UV )∗

z (�r′)
〉

is identical to Eq. (9). We note that

the effect of refraction of the incident UV light at the air-cladding interface is not accounted for
in the derivation of Eq. (9), but it is not expected to change our results qualitatively. However
we do have to scale the spatial dimensions of the speckles by the refractive index of the fiber
core. This can be accomplished by λUV → λUV/ncore substitution in Fig. 2 and Fig. 3.

Scalar theory [17] yields zero
〈
δεxy(�r)δεxy(�r′)

〉
and, hence, it does not contain a mecha-

nism to explain cross-polarization coupling by the photo-induced disorder. However, the scalar
theory correctly predicts the highly anisotropic structure of correlations in the diagonal com-
ponents of the dielectric tensor 〈δεii(�r)δεii(�r′)〉. This is a consequence of Eq. (2) and Eq. (4)
(see also Fig. 2(a) and Fig. 2(b)) which is linked to suppression of the radiative leakage in such
a fiber [17]. We expect the same conclusion to hold for theory presented in this work, which
properly accounts for the birefringence effects.

Due to non-uniform illumination of the diffuser, the correlators
〈

E(UV )
i (�r)E(UV )∗

j (�r′)
〉

de-

pend not only on Δ�r ≡ �r −�r′ but also on
(
�r+�r′

)
/2. However, we find that this depen-

dence affects only weakly both magnitude and the shape of the field-field correlators for
−Lz/2 < (z+ z′)/2 < Lz/2.

Fig. 3. Statistical properties of the spatially fluctuating dielectric tensor are described by
correlators

〈
δεi j(�r)δεi j(�r′)

〉
in Eqs. (12). To evaluate these expression we used the same

set of parameters as in Fig. 2. Only the x−y part of the entire tensor relevant to inter-mode
coupling are shown.

2.3. Statistical properties of disorder

In the next step we obtain the expressions for the photo-induced changes in the dielectric tensor
and its fluctuations. Assuming that individual field components represent Gaussian random
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variables we find the following expression for the change in the spatial average dielectric tensor
〈ε̂〉−n2

core:

Δεxx = 〈εxx〉−n2
core = C0

(
4

〈∣∣∣E(UV )
x

∣∣∣2
〉
+2

〈∣∣∣E(UV )
y

∣∣∣2
〉)

(10)

Δεyy =
〈
εyy

〉−n2
core = C0

(
2

〈∣∣∣E(UV )
x

∣∣∣2
〉
+3

〈∣∣∣E(UV )
y

∣∣∣2
〉)

(11)

where all off-diagonal elements are equal to zero, 〈εxx〉 = 〈εzz〉, and we assumed that the dif-

fuser in Fig. 1 is illuminated by an unpolarized beam, i.e.

〈∣∣∣E(UV )
x

∣∣∣2
〉

=

〈∣∣∣E(UV )
z

∣∣∣2
〉

. We

immediately observe that the change is anisotropic leading to birefringence. This is an effect
well known in fabrication of Bragg gratings [22]. The birefringence along the fiber axis can be
suppressed by polarizing the UV light along the axis of the fiber (z-axis), which is in accordance
with experiments [24].

Statistical properties of the spatially fluctuating dielectric tensor are described by〈
δεi j(�r)δεi j(�r′)

〉
. Substituting Eq. (2) and Eq. (3) into Eq. (4) we obtain

〈
δεi j(�r)δεi j(�r′)

〉
/C2

0

xx : 10
∣∣∣
〈

E(UV )
x E ′(UV )∗

x

〉∣∣∣2 +
∣∣∣
〈

E(UV )
y E ′(UV )∗

y

〉∣∣∣2 +6
∣∣∣
〈

E(UV )
x E ′(UV )∗

y

〉∣∣∣2 +2
∣∣∣
〈

E(UV )
y E ′(UV )∗

z

〉∣∣∣2

yy : 2
∣∣∣
〈

E(UV )
x E ′(UV )∗

x

〉∣∣∣2 +9
∣∣∣
〈

E(UV )
y E ′(UV )∗

y

〉∣∣∣2 +6
∣∣∣
〈

E(UV )
x E ′(UV )∗

y

〉∣∣∣2 +6
∣∣∣
〈

E(UV )
y E ′(UV )∗

z

〉∣∣∣2

xy : Re

[〈
E(UV )

x E ′(UV )∗
x

〉〈
E(UV )

y E ′(UV )∗
y

〉
+
〈

E(UV )
x E ′(UV )∗

y

〉2
+ c.c.

]
, (12)

where we use shorthand notations E(UV )
i (�r) → E(UV )

i and E(UV )
i (�r′) → E ′(UV )

i and chose to
show only a 2× 2 section (x− y) of the entire tensor, which will be relevant to our further
discussion. c.c. represents complex conjugate. By substituting the UV field correlators from
Sec. 2.2 we obtain the desired result. The spatial correlations in the photo-induced fluctu-
ations of the dielectric tensor are evaluated numerically and shown in Fig. 3. We observe

that the general structure of the correlator is similar to that of
∣∣∣
〈

E(UV )
x E ′(UV )∗

x

〉∣∣∣2, even for〈
δεxy(�r)δεxy(�r′)

〉
. The relative magnitudes of different components depend on such factors as

the fabrication geometry, c.f. Fig. 1, which allows one to design disordered optical fibers with
a desired set of statistical properties.

The natural scale to measure and compare magnitudes of different quantities in Eq. (10),
Eq. (11) and Eq. (12) is Δεxx. We find that under the experimental conditions Δεyy/Δεxx 	 0.7,〈
δε2

xx

〉
/Δε2

xx 	 0.5,
〈
δε2

yy

〉
/Δε2

xx 	 0.16, and
〈
δε2

xy

〉
/Δε2

xx 	 0.04. These values will become
important when we interpret the results of the experiment further below.

3. Hybrid coupled-power / coupled-mode theory

3.1. Motivation

Even (nominally) single-mode fiber (SMF) supports two propagating modes with orthogonal
polarizations. Geometric and stress imperfections along the length of the single-mode fiber
give rise to randomly varying birefringence [29]. Two perpendicular polarization states of the
same mode become coupled with the characteristic length on the order of kilometers. This
effect, known as polarization modal dispersion (PMD), can be described based on coupled-
mode equations formalism [30].

In MMF different modes generally propagate with different group delays, an effect known
as inter-modal dispersion. We note that, although inter-modal dispersion in MMF causes the
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output intensity profile to change with the propagation distance, it does not lead to the mixing
of modes as in PMD in SMF. Meanwhile, various imperfections in the fiber geometry do give
rise to mode-coupling described in language of coupled-power equations [2, 18]. Increasing
concentrations of imperfections to stimulate coupling between the guided modes also inevitably
results in coupling to the radiative modes.

In MMF with designed disorder considered in this work both cross- and intra-polarization
couplings between co-propagating modes occur on the same very short scale of several cen-
timeters. Meanwhile, the radiative leakage occurs at scale one order of magnitude longer. This
relationship between different length scales will inform our further analysis.

In choosing the applicable theoretical approach for this problem we were guided by the fol-
lowing considerations. In our system, the coupled-power method cannot provide an adequate
description of an evolution of the state of polarization (induced by birefringence) because it
does not account for phases of the perpendicular polarization states of the same mode. On the
other hand, the couple-mode approach becomes too cumbersome because we consider MMFs
supporting a relatively large number (on the order of tens) of modes. This also disallows the
continuum approximation in the coupled-power method [19] because this number is not suffi-
ciently large.

3.2. Separation into deterministic and stochastic contributions

In Sec. 2.3 we obtained Eq. (10) and Eq. (11) for the statistical average dielectric tensor which
shows that the fiber becomes (linearly) birefringent. Hence we begin our analysis by expressing
the electric field in terms of x- and y- linearly polarized co-propagating modes (orientation of
the axes is shown in Fig. 1) in the weakly guiding birefringent step-index fiber with the average
dielectric tensor

Ei (x,y,z)≈ ∑
ν

cν ,i(z)e
i(ωt−βν )zEν ,i(x,y). (13)

Here we adopt mode notations with two subscripts: ν enumerates N/2 linearly polarized (LP)
modes whereas i = {x,y} explicitly denotes the polarization of the mode. βν ≡ (βν ,x +βν ,y)/2
is the propagation constant averaged over two polarization states of ν’th mode. Birefringence
results in mode dispersion Δβν ≡ (βν ,x −βν ,y). The transverse field profiles Eν ,i(x,y) are as-
sumed to be normalized as βν ,i

∫ ∫ [
Eν ,i(x,y)Eν ′,i′(x,y)

]
dxdy = δνν ′δii′ , where δνν ′ and δii′ are

the Kronecker symbols. In these notations cν ,i(z) satisfy coupled-mode equations

dcν ,i(z)/dz = (±iΔβν/2−α/2)cν ,i(z)+ ∑
ν ′,i′

Kνν ′,ii′(z)cν ′,i′(z)e
i(βν−βν ′)z, (14)

where α is the loss coefficient (assumed to be mode independent [31]) and Kνν ′,ii′(z) =(
ω2/2ic2

)∫ ∫
Eν ,i(x,y)δεii′(x,y,z)Eν ′,i′(x,y)dxdy are mode coupling coefficients. The sign of

the polarization dispersion term is chosen positive for x and negative for y modes. We note that
x− y axes depicted in Fig. 1 constitute principal axes of the statistically averaged dielectric
tensor, c.f. Eq. (10) and Eq. (11).

Next we separate the modal coefficients into a deterministic (ballistic) and random compo-
nents via

cν ,i(z) = 〈cν ,i(z)〉+δcν ,i(z), (15)

where 〈...〉 denotes disorder average. By definition 〈δcν ,i(z)〉 ≡ 0. Below we describe the de-
terministic component with coupled-mode (amplitude) equations whereas the random contri-
bution will be treated within the coupled-power approach. In doing so, we explicitly account
for polarization rotation only in the transition regime (via coupled-mode equation for the am-
plitudes) of sufficiently short samples when the ballistic signal has not yet had a chance to
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reach the equilibrium mode distribution. As the energy is removed from the ballistic signal and
transfered into randomly phased component, described by δcν ,i(z), the effects of inter-mode
scattering and polarization dispersion compete. Therefore, the coupled-power description of
δcν ,i(z) is justified because, as it will be evident from the experimental analysis in Sec. 4, both
processes occur on the same characteristic length scale and because the inter-mode scattering
also involves cross-polarization coupling on the similar scale, c.f. Eqs. (12).

3.3. Coupled-mode description of mode amplitudes

Obtaining the evolution equations for 〈cν ,i(z)〉 from Eq. (15) involves the task of computing〈
Kνν ′,ii′(z)cν ′,i′(z)

〉
. The latter can be accomplished by employing approach used in an analysis

of dynamical systems. First, we formally integrate Eq. (15) to obtain cν ′,i′(z) on the left hand
side of the equation. Then we multiply both sides by Kην , ji(z) and perform a statistical average.
Assuming that δεi j(x,y,z) is a random delta-correlated Gaussian process, enables us to compute
the average. This assumption is justified because there is a large disparity in correlation scales
between cν ′,i′(z) and δεi j(x,y,z) – centimeters and λUV respectively, c.f. Sec. 2.2. We obtain

d 〈cν ,i(z)〉/dz = (±iΔβν/2−α/2−hν ,i/2)〈cν ,i(z)〉 , (16)

with coupling coefficients are defined by

hν ,i = ∑
ν ′′,i′′

hνν ′′,ii′′ (17)

hνν ′′,ii′′ =
(
ω4/4c4)〈δεii′′δεi′′i〉Vii′′i′′i

∫ ∫
E 2

ν ,i(x,y)E
2
ν ′′,i′′(x,y)dxdy, (18)

where we approximated 〈δεii′′ (�r)δεi′′i (�r
′′)〉 	 〈δεii′′δεi′′i〉Vii′′i′′iδ (�r−�r′′). Vii′′i′′i is the correla-

tion volume of the UV speckle pattern of the fabricated disorder, c.f. Sec. 2.2 and Ref. [17].
In arriving at Eq. (16) we neglected the terms involving

〈
cν ′,i′(z)

〉
cross channel scattering,

ν �= ν ′, i′ �= i, on the right hand side. This is justified because: (a) for co-polarized modes
coupling term involves factor

∫ ∫
Eν ,i(x,y)E 2

ν ′′,i′′(x,y)Eν ′,i(x,y)dxdy which is small for ν �= ν ′

due to orthogonality of Eν ,i(x,y); (b) for cross-polarized modes the factor 〈δεii′′δεi′′i′ 〉 is small
(i �= i′), c.f. Sec. 2.3.

We conclude this section by writing the solution of the derived Eq. (16)

〈cν ,i(z)〉 	 cν ,i(0)exp [(±iΔβν/2−α/2−hν ,i/2)z] (19)

where cν ,i(0) denote the modal amplitudes upon injection into the fiber at z = 0. The solution
above describes the evolution of the state of polarization of ν’th mode and its exponential
attenuation due to loss (α term) and decoherence (hν ,i term). This latter process transfers power
from the ballistic to random component, which we treat next.

3.4. Coupled-power equations for random component

Derivation for the coupled power equations [17] satisfied by P(δ )
ν ,i ≡

〈
|δcν ,i|2

〉
leads to a new

source term hν ,iP
(b)
ν ,i (z) ≡ hν ,i |〈cν ,i(z)〉|2 in the otherwise cannonical coupled power equa-

tion [18]:

dP(δ )
ν ,i /dz = hν ,iP

(b)
ν ,i −αP(δ )

ν ,i + ∑
ν ′,i′

hνν ′,ii′
(

P(δ )
ν ′,i′ −P(δ )

ν ,i

)
. (20)

The source term represents in-flux from the ballistic component described by Eq. (16). The

above equation should be supplemented with the initial conditions P(δ )
ν ,i (0) = 0.
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The approximate solution of Eq. (20) can be obtained at both small and large values of z. For

modes with non-zero (ballistic) source terms we find P(δ )
ν ,i (z)≈ hν ,i |cν ,i(0)|2 × z and P(δ )

ν ,i (z)≈[
∑ν ′,i′ hνν ′,ii′hν ′,i′

∣∣cν ′,i′(0)
∣∣2]× z2 for the rest. This solution is valid for z < min [hν ,i]. For z �

σ2 when the source terms become negligible, the power becomes equipartitioned among all N

modes P(δ )
ν ,i (z)≈ (1/N)exp [−αz]. Here σ2 ∼ hνν ′,ii′ denotes the second smallest eigenvalue of

the secular equation det
[
hνν ′,ii′ +(σ −hν ,i)δνν ′δii′

]
= 0 [17, 18].
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Fig. 4. (a) Runge-Kutta numerical solution of Eqs. (20) with α = 0. Only x-polarized LP
modes are exited: cν ,x(0) = (2/N)1/2. The power becomes equally distributed among the
modes of both polarizations (x – blue, y – gold) before equilibrating at 1/N level shown as

a dashed line. ∑ν P(δ )
ν ,i (z) converging at 1/2 are shown in the inset. The ballistic component

∑ν P(b)
ν ,x (z) and the total power in the x polarization ∑ν P(b)

ν ,x (z)+∑ν P(δ )
ν ,x (z) are depicted

with dashed and dotted lines respectively. (b) Evolution along the fiber length of elements of
the Stokes vector �s(z). The Poincaré sphere plot describes the transition from the linearly
polarized light with the degree of polarization P ≡ |�s| = 1 at z = 0 to unpolarized light
with P = 0 in the limit z → ∞. Blue, green and red lines correspond to the light linearly
polarized at φ = 0, π/8, and π/4 with respect to the x primary axis of the average dielectric
tensor respectively.

To obtain solution for arbitrary z we use the forth order Runge-Kutta method to solve
Eqs. (20) numerically under experimentally relevant conditions; α = 0 is assumed for clar-

ity. At z = 0 the only non-zero terms are cν ,x(0) = (2/N)1/2. Figure 4(a) depicts P(δ )
ν ,x (z) and

P(δ )
ν ,y (z) as blue and gold lines respectively. P(δ )

ν ,x (z) are peaked at small z before equilibration
is reached among the modes of both polarizations. The dashed line depicts the 1/N level. We
observe that efficient cross-polarization coupling due to induced birefringence makes intra-
and inter-polarization equilibration occur at similar lengths scales, i.e. σ−1

2 ∼ 2σ−1
3 which is

explicitly confirmed numerically. The inset in Fig. 4(a) depicts ∑ν P(δ )
ν ,i (z) demonstrating an

equilibration at 1/2 level shown as a black dashed line. Also depicted are the ballistic com-

ponent ∑ν P(b)
ν ,x (z), dashed line, and the total power in x polarization ∑ν P(b)

ν ,x (z)+∑ν P(δ )
ν ,x (z),

dotted line.

3.5. De-polarization and Stokes parameters

The direct consequence of the cross-polarization mode coupling caused by the induced birefrin-
gence, c.f. Eq. (12), is a de-polarization of the initial excitation. This process is conveniently
described by Stokes parameters [32]. Separation of the modal amplitudes into the deterministic
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(ballistic) and random contributions, c.f. Eq. (15), enables us to obtain the following expres-
sions:

S0 = ∑N/2
ν=1

(
P(b)

ν ,x +P(δ )
ν ,x −P(b)

ν ,y −P(δ )
ν ,y

)
; S1 =

N/2

∑
ν=1

(
P(b)

ν ,x +P(δ )
ν ,x −P(b)

ν ,y −P(δ )
ν ,y

)
; (21)

S2 = ∑N/2
ν=1

(〈cν ,x〉
〈
c∗ν ,y

〉
+
〈
c∗ν ,x

〉〈
cν ,y

〉)
; S3 = i

N/2

∑
ν=1

(〈cν ,x〉
〈
c∗ν ,y

〉−〈
c∗ν ,x

〉〈
cν ,y

〉)
.

Three-component Stokes vector is defined as s1−3 = S1−3/S0. In these notations the fully polar-
ized light, regardless of its state of polarization, corresponds to the Stokes vector at the surface
of the Poincaré sphere |�s|= 1. In contrast, a completely unpolarized light has the state of polar-
ization P ≡ |�s|= 0.

Figure 4 depicts the evolution of the Stokes vector along the length of the fiber. Blue, green
and red lines correspond to the initial linear polarizations at the angles φ = 0,π/8,π/4 with
respect to the principal axis of the fiber: cν ,x = (2/N)1/2 cos(φ) , cν ,y = (2/N)1/2 sin(φ) is
assumed. In each case, we observe a relaxation of the state of polarization from P = 1 at z = 0
to P = 0 at z � σ−1

2 . This concludes our demonstration of complete mixing on the same short
length scale σ−1

2 of the both co- and cross-polarized modes in the artificially disordered fiber.

4. Experimental corroboration

4.1. Experimental setup

In this experiment we employed a step-index silica fiber doped by Ge (PS1250/1500 of Fiber-
core). The main parameters of the fiber are a core diameter of 7.66μm, cladding diameter of
125μm, and numerical aperture (NA) of 0.13, with the refractive indices of the core and the
cladding being 1.463 and 1.457, respectively. Three samples of fiber (about 20cm) included the
disordered part of 2, 4 and 12cm respectively. Fabrication and characterization of the volume
disorder is described in details in Ref. [17].

At the input of the optical fiber the polarized light goes through a half wave-plate and a linear
polarizer oriented along axis x′, which makes angle φ with respect to the principal axis of the
fiber x. The output light was detected separately for both polarizations: a) after passing through
a polarizer of the same orientation as at the input (x′x′ - polarization), or b) perpendicularly
polarized (x′y′ - polarization). We analyzed the output light of each polarization independently.
Measurement was repeated 10 times for different random bending of the fiber. The bending
of the fiber was sufficient to change the disorder but not sufficient to introduce appreciable
additional birefringence. Both polarizers were rotated synchronously by 10◦ (i.e. φ was incre-
mentally increased) and measurements were repeated.

At the probe laser light wavelength λ = 543nm used in measurements, the number of guided
LP modes (counting both polarizations) is N = 20. The average integrated intensity of outgoing
light for two perpendicular orientations of the polarizer are presented in Fig. 5 for rotations in
the interval 0◦ −90◦.

4.2. Comparison of theory and polarization-resolved measurement

After obtaining the solutions for 〈cν ,i(z)〉 and P(δ )
ν ,i (z) describing the evolution of the ballistic

and stochastic components in Eq. (15) in the principal axes coordinate system x−y, we perform
the coordinate transformation to the axes x′ − y′ rotated by angle φ . We obtain

P[ x′
y′

] = Px

[
cos(φ)2

sin(φ)2

]
+Py

[
sin(φ)2

cos(φ)2

]
±2sin(φ)cos(φ)ℜ

[
∑
ν
〈cν ,x〉

〈
c∗ν ,y

〉]
, (22)
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where Pi ≡ |〈cν ,i〉|2 +P(δ )
ν ,i and ℜ[. . .] denotes the real part.

Eq. (22) can be evaluated numerically as in Sec. 3.4. However, it is illuminating to find a
closed-form analytical expression describing the evolution of power in each polarization Pi′ .
This task can be accomplished with an assumption that the asymptotic expression for Pi(z) =
[(Pi(0)−1/2)exp(−σ2z)+1/2]exp(−αz) is valid for the entire range of 0 < z < ∞. The inset
in Fig. 4 shows the adequacy of such an approximation. We arrive at our final result

P[ x′
y′

](z) = e−αz
{(

Px(0)

[
cos(φ)2

sin(φ)2

]
+Py(0)

[
sin(φ)2

cos(φ)2

]
− 1

2

)
e−σ2z +

1
2

±2sin(φ)cos(φ)
2
N ∑

ν
P1/2

ν ,x (0)P
1/2
ν ,y (0)exp

(
−hν ,x +hν ,y

2
z

)
cos(Δβν z)

}
, (23)

where, as previously, we take Px(0)+Py(0) = 1. The above expression describes the following
effects: (i) attenuation due to radiative losses – α term; (ii) assymptotic equal distribution of
power over all N co-propogating modes of the fiber – σ2 term; (iii) de-polariation of the in-
cindent light – hν ,i term; (iv) change of the polarization state is the decaying ballistic signal
– Δβν term. Furthermore, the expression above conserves power at every z. Figure 5 demon-
strates that Eq. (23) describes the experiment well: it captures both the polarization and length
dependences of the transmitted signal.
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Fig. 5. (a) Experimental data in L= 2,4 and 12cm samples for the ensemble-averaged trans-
mission for x′x′ (circles) and x′y′ (squares) polarization channels as the function of the angle
φ between x′ and the principal axis x. In all cases the incident light is polarized along x′
axis. For clarity, the data is normalized as Px′x′(z)→ Px′x′(z)/

∫ (
Px′x′(z)+Px′y′(z)

)
dφ and

similarly for Px′y′(z) to eliminate the effect of attenuation ×exp(−αz). Solid lines show
the theoretical fit with Eq. (23) by combining the ∑ν term into a single fitting parameter.
Two converging surface envelopes 1/2± exp(−σ2z)/2 are shown a guide for an eye de-
mostrating almost complete mode mixing at L = 12cm. (b) Normalized by Px(z)+Py(z)
to eliminate the exp(−αz) factor, Px(z),Py(z) show convergence toward 1/2. To acheive
alighnment with the principal axes of fiber, the experimental data (symbols) was obtained
in-situ during fabrication of the additional segments of disordered fiber. Solid lines obtained
for φ = 0 from the fit in (a) show somewhat slower decay, that is attributed to unintentional
twisting in process of generating ensemble realizations by bending of the fiber.
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5. Conclusion

In this work we obtained two main results. First, beginning with a microscopical model of
photo-sensitivity in a germano-silicate glasses, we analytically derived formulae describing the
spatial correlations between the components of the dielectric tensor, c.f. Sec. 2.3. We made the
connection between the statistical properties, including the polarization statistics, of the inci-
dent UV light and those of the artificial disorder inscribed in the core of the fiber. Importantly,
as it has been shown by Korotkova in Ref. [33], the statistics of (the UV) light changes when
the light propagates in a free space. This suggests that the spatial properties of the UV light,
and hence of the artificial disorder, can be manipulated by altering the illuminations geometry
during the disorder writing process.

The second result concerns the description of the light propagation in the fiber with the arti-
ficially correlated disorder. Our previous study based on coupled power theory [17] could not
explain strong mixing of cross-polarized co-propagating modes observed experimentally. We
suggested that an induced birefringence might be the cause. This work shows that the actual
answer is more complicated. On one hand, the existence of the linear birefringence on average,
c.f. Eq. (10) and Eq. (11), causes only a periodic evolution of the two polarization states of each
mode in the fiber. By itself this effect does not lead to equilibration of power among all modes
in two polarization channels. Instead, the coupling is the result of the non-zero correlations
between the off-diagonal components of the dielectric tensor, c.f. Eq. (12), which in turn are
caused by the non-trivial correlations between x− and y− components of the UV writing beam,
c.f. Fig. 2. Unlike intra-polarization coupling, the magnitude of the cross-polarization coupling
is directly related to existence of the longitudinal component of the UV field used in fabri-
cation of disorder. Thus, our choice of the near-field illumination (small reparation between
diffuser and fiber in Fig. 1) is critical. Our theory predicts significantly weaker coupling be-
tween orthogonally-polarized modes in the paraxial regime when the only remaining coupling
due to bending-stresses may become dominant.

Modeling light propagation in the disordered birefringent fiber poses a challenge for a
coupled-power description. In fact, it becomes inadequate because coherent process of evolu-
tion of polarization cannot be captured. To overcome this limitation, in this work we developed
a hybrid theory which treats the deterministic (ballistic) part of the light via coupled-amplitude
equations, whereas the randomly-phased component is treated with a coupled-power equations,
c.f. Sec. 3. Neglecting the polarization change in the random component is justified in our arti-
ficially disordered fiber because the process of scattering occurs on a very short length scale on
the order of 1cm.

Comparison with experiment in Sec. 4 suggests that very short ∼ 10cm segments of the fab-
ricated multi-mode fibers with designed disorder can be used as mode-scrambler / descrambler
mixing efficiently all modes with both states of polarization. Furthermore, we previously esti-
mated and confirmed experimentally that the mixing can be accomplished without significant
radiative losses, 3.6dB in Ref. [17]. This makes our fibers with custom-made disorder suitable
for such applications as e.g. hardware encryption and power-management in high-power fiber
laser systems. The complete mode mixing is also required to achieve the maximum channel
capacity in MIMO transmission in the multi-mode optical fibers.
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