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We present results of experimental and theoretical studies of polarization-resolved light transmission
through optical fiber with disorder generated in its germanium-doped core via UV radiation transmitted
through a diffuser. In samples longer than a certain characteristic length, the power transmitted with
preserved polarization is observed to be distributed over all forward-propagating modes, as evidenced by
the Rayleigh negative exponential distribution of the near-field intensity at the output surface of the
fiber. Furthermore, the transmitted power becomes also equally distributed over both polarizations.
To describe the optical properties of the fibers with the experimentally induced disorder, a theoretical
model based on coupled-mode theory is developed. The obtained analytical expression for the correlation
function describing spatial properties of the disorder shows that it is highly anisotropic. Our calculations
demonstrate that this experimentally controllable anisotropy can lead to suppression of the radiative
leakage of the propagating modes, so that intermode coupling becomes the dominant scattering process.
The obtained theoretical expressions for the polarization-resolved transmission fit very well with the
experimental data, and the information extracted from the fit shows that radiative leakage is indeed
small. The reported technique provides an easy way to fabricate different configurations of controlled
disorder in optical fibers suitable for such applications as random fiber lasers. © 2011 Optical Society
of America
OCIS codes: 290.4210, 060.2310, 260.2160.

1. Introduction

In recent years, there has been a considerable inter-
est in optical disordered media. This is largely due
to the new functionalities brought about when dis-
order is introduced into homogeneous and periodic
systems. A random laser [1], where laser action is
ensured by coherent feedback in disordered struc-
tures such as powders or porous crystals, is a striking

example. In Ref. [2], the advantages of disordered
systems in wireless communications of high informa-
tion capacity have been shown. It has also been re-
ported [3] that the disorder induced in nonlinear
crystals can greatly improve the efficiency of opera-
tion of nonlinear optical devices. It appears that
disordered media open numerous possibilities for ap-
plications in sensors, nanophotonics, and, more gen-
erally, in various light transmission systems.

Localization of electromagnetic radiation in
strongly disordered random media has attracted
great interest from both fundamental and practical
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points of view [4]. Studied in the optical as well as in
the microwave spectral regions, the phenomenon of
localization depends on the dimensionality of the sys-
tem. In particular, in surface- [5–7] and volume- [8]
disordered waveguides, it leads to arbitrarily small
transmission, which diminishes exponentially with
the length of the system. This disorder-induced
confinement can be employed in such an application
as a laser.

Disorder-induced confinement has been shown to
lead to unusual, while at the same time, useful prop-
erties in photonic-crystal waveguides [9] and in opti-
cal fibers [10–15]. An optical fiber is an extremely
promising experimental system for random lasing
applications [1]: Lizárraga et al. [15] reported coher-
ent random lasing on randomly distributed Bragg
gratings in single-mode optical fibers, whereas Tur-
itsyn et al. [14] demonstrated an incoherent random
lasing.

In this report we present experiments on the fab-
rication of random variations of the refractive index
throughout the core of a Ge-doped multimode optical
fiber, whose parameters can be controlled in our ex-
perimental setup. The characteristics of the disorder
created are evaluated from an analysis of the inten-
sity distribution of the near fields at the output of the
fiber and by the analysis of the speckle size depen-
dence of the total intensity of the transmitted light.
The experimental results are compared and agree-
ment is found, with the predictions of the coupled-
mode theory, which is adapted to the particular type
of volume disorder considered in this work. We show
that by varying the correlation size of the disorder,
scattering sufficiently strong for achieving the com-
plete mixing of the forward-propagating modes can
be achieved in a centimeter-length segment of multi-
mode fiber. We also demonstrate that disorder with
strongly anisotropic correlation function can lead to a
dramatic suppression of radiative losses, so that cou-
pling between modes becomes dominant. Thus, the
scattering is much more efficient compared to the
weak scattering of the material impurities as in, e.
g., Ref. [14], and, unlike Bragg gratings, it is broad-
band in the propagation constant of a mode or the
frequency of the light. The above properties of our
system make it a promising candidate for fabrication
of a compact multimode random fiber laser. This can
be achieved by sandwiching the disordered segment
of the fiber between two Bragg gratings, which would
provide feedback.

The paper consists of the following sections. In
Section 2, the experimental setup used for the fabri-
cation of the fiber samples with disorder is described.
In Section 3, we find the experimental and numerical
results on the intensity distribution of light emerging
from an optical fiber with different scales of the dis-
order. In Section 4, theoretical analysis of the optical
properties of a fiber with speckled perturbations of
the refractive index in its core is presented. Finally,
discussion and outlook are presented in Section 5.

2. Fabrication of the Disorder

The experimental setup utilized for the fabrication of
disorder in optical fibers is schematically depicted in
Fig. 1. In our experiments, we employed a step-index
optical fiber (PS1250/1500 of Fibercore) sensitized by
Ge. The main parameters of the fiber are a core dia-
meter of 7:66 μm, cladding diameter of 125 μm, and
numerical aperture (NA) of 0.13, with the refractive
indices of the core and the cladding being 1.463 and
1.457, respectively. The cutoff wavelength of the fiber
with these parameters is about 1200nm. The disor-
der was introduced in the Ge-doped fiber core by ex-
posing it to UV light from an intracavity frequency-
doubled argon-ion laser (244nm) that passed
through a cylindrical lens and a diffuser, creating,
in this way, a speckle pattern in a plane parallel to
the fiber axis. The light beam generated by the UV
laser was initially expanded by a cylindrical lens
with a focal length of 12 cm in order to form an
elliptical spot with desired dimensions at the diffuser
plane. The beam transmitted through the diffuser
was used for exposing the photosensitive fiber.
Speckle, as the strongly fluctuating, grainy intensity
pattern resulting from the interference of randomly
scattered coherent waves, resulted in fluctuations of
the illuminating UV intensity in the fiber core. An
expression for the size of a speckle, Eqs. (6)–(8) is de-
rived in Section 4 below. It depends on the distance
between the diffuser and the fiber axis, D, the size of
the illuminated region in the diffuser plane Lx;z,
and the wavelength of the recording UV light λUV.
Variations of D in the range 2–8mm and of Lx;z in
the range of 8–10mm allowed us to obtain an aver-
age speckle size along the fiber axis between 200
and 600nm.

The length of each segment with the fabricated dis-
order was 1–2mm. The experimental geometry al-
lowed us to record the segments with lengths up
to 5 cm. In order to achieve disorder with similar sta-
tistical parameters in each segment, the same expo-
sure time was used for all segments, namely, about
10 min at a mean power of the UV laser of about
100mW. We observed experimentally that after this
exposure, the intensity distribution of the output
probe light at the fiber output did not change. Every
next segment with a random distribution of the

Fig. 1. Experimental setup.
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refractive index was recorded directly after the
preceding one. The total lengths of the fabricated dis-
ordered part (Ls) were 2, 4, 6, 8, 10, and 15 cm.

After forming the disordered segment, we
launched the probe beam of the He–Ne laser oper-
ated at λ ¼ 543nm into the fiber, and detected the
image of the output intensity distribution by a CCD
camera (ST-402ME SBIG). The selected wavelength
543nm of the probe beam ensured a low mode-
number propagation regime, and corresponded to
the sensitivity range of the CCD camera quite well.
The light emerging from the fiber passed through the
microscope objective ×100, which imaged the output
end of the fiber on the CCD camera. In front of the
CCD camera there was a polarizer utilized for char-
acterization of the transmitted light.

3. Experimental Results

The resulting V parameter of the utilized fibers was
5.8171 at the probe wavelength, and the expected
number of the guided LP modes is N ¼ 20. By vary-
ing the angle of incidence of the probe beam, different
combinations of modes were excited and the corre-
sponding near-field transmitted intensity was re-
corded. It appears that these measurements can be
made quite reliably. Indeed, (i) the light polarization
was preserved in the straight fiber without disorder
and (ii) the ambient temperature was controlled by a
special air conditioning system that excluded the
fluctuation of the parameters of the fiber samples
during measurements. At the input of the optical
fiber, the polarized light goes through a half-wave
plate and a linear polarizer. The output light was
detected separately for both polarizations: (i) after
passing through a polarizer of the same orientation
as at the input (pp polarization) or (ii) perpendicu-
larly polarized (ps polarization). We analyzed the
output light of each polarization independently.
The polarization extinction ratio of the laser source
and the fiber output was measured in the linear
transmission regime.

Examples of the intensity distribution of the light
emerging from the fiber, obtained for different reali-
zations of the disorder and for different angles of the
incident beam with disordered segments of the fiber
of 1 (a) and 2 cm (b) length, are presented in Fig. 2.
The left column presents results of pp-polarization
measurements, and the right column presents
results of ps-polarization measurements. Different
realizations were obtained by slightly bending the
disordered part of the fiber.

In Fig. 3, the ensemble-averaged intensities of the
output light measured experimentally as functions of
the length of the disordered parts of the fiber are pre-
sented. The averaging was performed over ten reali-
zations. The solid and dashed curves are the fit with
the theoretical expression Eqs. (24) and (25) obtained
from Eq. (19) in the Section 4. The theoretical and
experimental results show excellent agreement.

4. Coupled-Mode Theory in Fibers with Speckled
Perturbations of the Refractive Index

As was shown in Section 3, the random fluctuations
of the refractive index imprinted in the core of the
photosensitive fiber resulted in the mixing of differ-
ent forward-propagating modes. To describe this pro-
cess and to obtain the characteristic (mixing) length
of the disordered segment of fiber, we employ the
coupled-power method developed by Marcuse [16].
However, because the disorder induced by the
speckle pattern (see Section 3) does not allow a fac-
torization of the refractive index modulations into a
product of a function of the transverse coordinates

Fig. 2. (Color online) Examples of the output intensity distribu-
tion observed in some realizations with the disordered part of fiber
(a) 1 cm and (b) 2 cm. The left column in each figure presents the
pp-polarized distribution, and the right column presents the ps-po-
larized distribution. The angles of incidence are 0°, 2°, and 5° from
the top to the bottom images.

Fig. 3. Experimentally measured total co- (open symbols) and
cross-polarized (solid symbols) transmission as a function of the
length of the disordered part of the fiber for different polarizations
of the transmitted beam. The circles correspond to an angle of in-
cidence of 0°, the triangles to 2°, and the squares to 5°. Solid and
dashed curves represent the theoretical fit with Eqs. (24) and (25)
with parameters α ¼ 0:064 cm−1, σ2 ¼ 0:1917 cm−1.
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and a function of the longitudinal coordinate
δnðx; y; zÞ ≠ δnðx; yÞ × f ðzÞ, the original derivation is
not applicable. The goal of this section is to obtain
a system of coupled-power equations applicable to
the experimentally induced disorder. In the process
of derivation we verify that coupling between the for-
ward and backward propagating modes is negligible.
We also give detailed estimates of the radiative loss
due to scattering into the nonguiding modes. We
show that because of the highly asymmetric correla-
tion function of the disorder, the radiative loss is
greatly reduced, so it becomes comparable to the cou-
pling coefficients between guided modes.

A. Statistical Properties of the Disorder

To begin our analysis, we need to obtain the statis-
tical properties of the disorder, specifically, the
two-point correlator of the fluctuations of the dielec-
tric function hδεðrÞδεðr0Þi, where the angular brackets
denote averaging over different realizations of disor-
der. Here we defined the fluctuation of the dielectric
function δεðrÞ ¼ εðrÞ − hεðrÞi, which has the property
hδεðrÞi ¼ 0. We make an assumption that in the pro-
cess of exposure to the ultraviolet (UV) radiation, the
material in the fiber core remains in a linear regime,
i.e.,

hδεðrÞδεðr0Þi ¼ hδε2i jhAðrÞA�ðr0Þij2
hjAðrÞj2ihjAðr0Þj2i≡ hδε2ijμðr0; rÞj2;

ð1Þ

where AðrÞ are statistically uniform complex field
amplitudes of the UV light scattered by the diffuser.
The amplitudes can be computed in the paraxial ap-
proximation with the help of the Fresnel diffraction
integral, which propagates the fields delta-correlated
in the plane of the diffuser; the procedure is de-
scribed in Subsection 4.D of Ref. [17]. In our problem,
we are interested in hδεðrÞδεðr0Þi as a function of all
three spatial coordinates, including both those per-
pendicular (x and z axes) and parallel (y axis) to
the direction of the UV illumination. In the geometry
considered, it is impossible to obtain such an expres-
sion in a compact form. To proceed, we assume that

μðr0; rÞ ≈ μðr0 − rÞ ≈ μðx − x0; 0; z − z0Þμð0; y − y0; 0Þ: ð2Þ

In this expression the first factor describes the corre-
lation in the plane perpendicular to the UV propaga-
tion, whereas the second factor describes the depth of
the speckle. The expressions for these functions can
now be computed with the knowledge that the Gaus-
sian UV laser beam is spread out by the cylindrical
lens to cover the spot

Ið~x;~zÞ ∝ exp½−~x2=L2
x − ~z2=L2

z �; ð3Þ

where ~x, ~z denote the coordinates in the plane of the
diffuser. The intensity distribution in Eq. (3) allows
one to compute the Fresnel integrals [17], which de-

fine the correlation functions μðx − x0; 0; z − z0Þ and
μð0; y − y0; 0Þ in Eq. (2). Performing the integrations,
we obtain

jμðx − x0; 0; z − z0Þj2 ¼ exp
�
−
�
x − x0

Sx

�
2
�

× exp
�
−
�
z − z0

Sz

�
2
�
; ð4Þ

jμð0;y− y0;0Þj2

¼ 1�
1þ

�
πL2

x

λUVD2 ðy− y0Þ
�
2
�

1=2
�
1þ

�
πL2

z

λUVD2 ðy− y0Þ
�
2
�

1=2

≈
1�

1þ
�
y−y0
S2
y

�
2
�

1=2
: ð5Þ

The length Si was introduced to describe the spatial
dimensions of the speckles:

Sx ¼
λUVDffiffiffi
2

p
πncoreLx

≈ 0:15
λUVD
Lx

; ð6Þ

Sy ¼
ffiffiffi
3

p
λUVD2

πncoreL2
z
≈ 0:38

λUVD2

L2
z

; ð7Þ

Sz ¼
λUVDffiffiffi
2

p
πncoreLz

≈ 0:15
λUVD
Lz

; ð8Þ

whereD denotes the distance from the diffuser to the
fiber core during the exposure; all dimensions are
scaled by the refractive index of the core; and Lz ≫

Lx is assumed in Eq. (5). Finally, by substituting
Eqs. (4) and (5) into Eq. (1), we obtain the desired
expression for the second-order statistics of disorder
introduced in imprinting the speckle pattern in the
core of the photosensitive optical fiber:

hδεðrÞδεðr0Þi

≈ hδε2i exp
�
−
�
x − x0

Sx

�
2
�

1�
1þ

�
y−y0
S2
y

�
2
�
1=2

× exp
�
−
�
z − z0

Sz

�
2
�
: ð9Þ

The parameter hδε2i ¼ 2ncoreΔnUV is related to
the change in the refractive index ΔnUV due to the
UV irradiation. We note that the above approxi-
mate expression remains valid for jy − y0j ≤ Sy. For
jy − y0j ≫ Sy the factor omitted in Eq. (5) has to be
also included to ensure that the function is
normalizable.
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B. Derivation of Coupled-Power Equations

We begin our derivation of a system of coupled-power
equations by expressing the electric field in terms of
the linearly x- and y-polarized modes in the weakly
guiding step-index fiber without disorder:

EðrÞ ≈
X
ν
cνðzÞeiðωt−βνzÞðEt;νðx; yÞ þ êzEz;νðx; yÞÞ: ð10Þ

Here the summation runs over all modes ν of the fi-
ber, including the odd and even modes of both x (odd
ν’s) and y polarizations (even ν’s), assumed to be nor-
malized as

βν
ZZ

½Et;νðx; yÞ · Et;ν0 ðx; yÞ�dxdy ¼ δνν0 ; ð11Þ

where δνν0 is the Kronecker symbol. Equation (10)
contains contributions from only forward-propagat-
ing modes. In Subsection 4.C we will support this as-
sumption by showing that the coupling coefficients
into the backpropagating modes is negligible.

Further, in Eq. (10) both the transverse Et;νðx; yÞ
and the longitudinal êzEz;νðx; yÞ components of the in-
dividual modes are retained despite the smallness of
the latter. As will be seen below, retaining the long-
itudinal components is crucial because it gives the
dominant contribution to the coupling between the
modes with the orthogonal polarizations. βν is
the propagation constant of the νth mode, and
cνðzÞ is its amplitude at position z along the fiber.

Following [16], we obtain the coupled amplitude
equation

dcνðzÞ
dz

¼
X
ν0
Kνν0 ðzÞcν0 ðzÞeiðβν−βν0 Þz; ð12Þ

where

Kνν0 ðzÞ ¼
ω2

2c2

ZZ
δεðrÞ½Et;νðx; yÞ · Et;ν0 ðx; yÞ

þ Ez;νðx; yÞEz;ν0 ðx; yÞ�dxdy ð13Þ

are the amplitude coupling coefficients. The system
of equations Eq. (12) can be used to obtain the solu-
tion for a particular realization of the random func-
tion δεðrÞ. The ensemble-averaged information can
be obtained by defining the power in each mode as
Pν ¼ hjcνj2i, which satisfies the evolution equation:

dPν
dz

¼
�
c�ν

dcν
dz

�
þ c:c:; ð14Þ

where c.c. stands for the complex conjugate. We pro-
ceed by substituting Eqs. (12) and (13) into Eq. (14).
Evaluation of the ensemble average h…i requires the
following two assumptions. PνðzÞ is assumed to vary
on scales much larger than that of the disorder Sz ∼ λ.

This assumption is easily satisfied because the
magnitude of the refractive index fluctuations is
small—ΔnUV ≪ 1. The experimental data in Fig. 3
further corroborate this assertion.

At this point, our derivation departs from that of
Marcuse [16]. To evaluate hjKνν0 ðzÞj2i, instead of
the stringent requirement that the function describ-
ing the disorder in the refractive index can be factor-
ized as δnðx; y; zÞ ≠ δnðx; yÞ × f ðzÞ, we use a much
weaker assumption that z dependence is factorizable
in hδεðrÞδεðr0Þi. Indeed, the multiplicative property of
the correlation in the speckle in Eq. (9) that sepa-
rates the dependencies on the transverse (x and y)
and the longitudinal (z) coordinates, enables one to
complete the derivation of the system of coupled-
power equations

dPν
dz

¼
X
ν0
hνν0 ðPν0 − PνÞ; ð15Þ

with the power coupling coefficients given by the
following expression

hνν0 ¼ hδε2iω
4π logð2ÞSxSySz

c4
e−S

2
z jβν−βν0 j2=4

×
ZZ

½Et;νðx; yÞ · Et;ν0 ðx; yÞ

þ Ez;νðx; yÞEz;ν0 ðx; yÞ�2dxdy: ð16Þ

In obtaining Eq. (16) we approximated exp½−ðx − x0Þ2=
S2
x � × ½1þ ðy − y0Þ2=S2

y �−1=2 by the product of two delta
functions 4π1=2 logð2ÞSxSyδðx − x0Þδðy − y0Þ with the
coefficients chosen so that both pairs of functions en-
close identical area. This approximation is justified
fairly well in our case because Sx;y are smaller than
the characteristic scale, a, of the field variation in the
transverse direction for all guided modes. In case of
the function that describes y dependence, the full ex-
pression Eq. (5) was used to obtain the normaliza-
tion, and the correction terms logarithmic in Lx=Lz
were omitted in the result.

C. Efficiency of Backscattering

In the process of derivation of the coupled power
equations, Eqs. (15) and (16), we neglected the pos-
sibility of scattering from a forward-propagating
mode into one of the backward-propagating modes.
This is an important process which, if efficient, can
give rise to the phenomenon of Anderson localiza-
tion, which originates in the studies of mesoscopic
systems in condensed matter physics [18]. Multiple
scattering and interference of the forward- and back-
ward-propagating waves can suppress transmission
and lead to an exponential decay of the transmission
coefficient. This dependence may appear similar to
that observed in Fig. 3.

To estimate the efficiency of the backscattering
process in our system, we compute the forward-to-
backward coupling coefficients. The derivation
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follows the steps similar to those in Subsection 4.B,
with the final expression for hþ;−

νν0 being given by the
formula similar to Eq. (16) with an exception that
the exp½−S2

z jβν − βν0 j2=4�≃ 1 factor is replaced by
exp½−S2

z jβν þ βν0 j2=4� ≪ 1. One can see that this
difference proves to be extremely important because
jβν − βν0 j ≪ jβν þ βν0 j≃ 2ncore × ð2π=λÞ and Sz ≲ λ in
our fibers.

The above estimate shows that the back-
scattering mechanism is, indeed, strongly sup-
pressed in the considered system as it was assumed
in the previous section. As a consequence, we do not
expect our system to exhibit the phenomenon of
Anderson localization.

D. Radiative Losses

Optical fiber with unwanted or purposefully intro-
duced, as in our case, modulations of the refractive
index are invariably susceptible to the radiative
losses. Indeed, the index nonuniformity couples the
modes guided in the core of the fiber to the nonguided
modes that extend into the cladding and are effec-
tively lost. Even the fibers of the highest quality suf-
fer from radiative loss from Rayleigh scattering on
molecular inclusions introduced in its fabrication
process [19]. The consequence of this loss is the ex-
ponential decay of the power in a mode PνðzÞ ∝
exp½−ανz�. Unlike the losses suffered in waveguides
with rough surfaces, the radiative loss in the volume-
disordered fibers, such as fibers with molecular de-
fects, should not exhibit a strong dependence on
the mode index ν. Because the fibers studied in this
work are of the latter kind, we will assume αν ≡ α
hereafter.

In Chap. 4 of Ref. [16], Marcuse has derived an ex-
pression for α in the case of Rayleigh scattering. It is
interesting to note that under quite general condi-
tions, the ratio between coupling coefficients and the
scattering loss appears to be independent of the dis-
order parameters [20]

α
hνν0

≃
2
3π k

2
0n

2
coreA; ð17Þ

where k0 ¼ 2π=λ and A is the area of the fiber core.
One can easily see that the above estimate
gives α=hνν0 ≫ 1 for a step-index fiber with ðncore−
ncladdingÞ=ncore ≪ 1. Evaluating this ratio for our sys-
tem gives a number on the order of a thousand.
Although the above estimate is made under the as-
sumption of Rayleigh scattering, it may still be ap-
plicable in our case. This is because the Rayleigh
criterion involves not only the smallness of the scat-
terer compared to the wavelength of light but also
the difference between its refractive index and that
of the surrounding [21]. Below, we expose a flaw in
this logic and show that Eq. (17) is not applicable
to our system and that, instead, α ∼ hνν0

Unlike a deterministic scattering off a single par-
ticle, the scattering in a random system has to prop-

erly account for the exact autocorrelation function
given in our system by Eq. (9). The combined effect
for a group of scatters can be greatly diminished if
the phases of the partial waves are sufficiently ran-
dom. Quantitatively, this effect is described [16] by
the following integral

α∝ I¼
Z

dΩΔkðêscat · êzÞ2∭ ∞
−∞duxduyduzhδεðrÞδεðrþuÞi

×exp½iΔk ·u�: ð18Þ

Here, Δk ≈ ncorek0ðêscat − êzÞ defines the change of
wavevector after scattering and

R
dΩΔk… denotes

the solid angle integration over all possible scatter-
ing directions.

The Rayleigh approximation in Eq. (18) amounts
to assuming that disorder is correlated in the vol-
ume L3

corr much less than λ3, which results in
exp½iΔk · u�≃ 1. In the optical fibers with photoin-
duced disorder considered in our work, this assump-
tion is no longer valid. Thus, the Rayleigh result
I ¼ ð4π=3Þhδε2iL3

corr needs to be reevaluated for the
correlator Eq. (9) we obtained in Subsection 4.A.

Calculation of the triple integral in Eq. (18) is fa-
cilitated by the fact that hδεðrÞδεðrþ uÞi is factoriz-
able into three functions, each of which depend
only on one spatial variable. The integrals over ux
and uz give rise to

ffiffiffiπp
Sx;z exp½−ðΔkx;zSx;z=2Þ2�. The in-

tegral over uy does not give, in general, a compact ex-
pression. However, in a special case when Lx ¼ Lz, it
leads to a simple expression that illuminates the gen-
eral tendency: πSy exp½−ΔkySy�. Inspection of all
three integrals shows that the result of the triple in-
tegral in Eq. (18) is a function that is very strongly
peaked around jΔkj ¼ 0. Therefore, the remaining
integration over solid angles should produce a result
much smaller than 4π=3 predicted for the isotropic
(Rayleigh) scattering. To complete our calculation

Fig. 4. (Color online) The distributions, which correspond to an
unconstrained random sum (shown as a dashed curve) and to a
constrained random sum (shown with the solid curve) of all modes
of the fiber, are compared to the experimentally observed distribu-
tions of the near-field intensity measured in co- (circles) and cross-
polarized (squares) channels in a sample with L ¼ 8 cm. The thin
symbols correspond to an angle of incidence of 2°, and the bold
symbols correspond to an angle of incidence of 5°.
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of the absorption coefficient α we perform the inte-
gral over dΩ in Eq. (18) numerically and report
the results in Fig. 5.

E. Solution of Coupled-Power Equations

The system of coupled-power Eqs. (15) obtained in
Subsection 4.B did not account for loss. This omission

can be rectified by a phenomenological correction due
Marcuse [16]

dPν
dz

¼ −αPν þ
X
ν0
hνν0 ðPν0 − PνÞ: ð19Þ

Such a treatment of loss can be rigorously justified in
the case when the such a loss is independent of the
mode index [22]. As already mentioned in the preced-
ing section, this is a reasonable assumption for the
volume-disordered fibers that we also adopt here.

Solution of Eqs. (19) proceeds with two steps. First,
the effect of the radiative loss is factored out with
substitution

PνðzÞ ¼ PðlosslessÞ
ν ðzÞ × exp½−αz�; ð20Þ

which reduces Eqs. (19) back to Eqs. (15) satisfied
now by PðlosslessÞ

ν ðzÞ.
In the second step, the solution for PðlosslessÞ

ν ðzÞ is
obtained by the following ansatz

PðlosslessÞ
ν ðzÞ ¼ Aν exp½−σz�; ð21Þ

where σn and the corresponding set of AðnÞ
ν are to be

determined by substitution of Eq. (21) into Eq. (15).
Here σn are the eigenvalues of the secular equation

det
�
hνν0 − δνν0

X
τ
hντ þ σ

�
¼ 0; ð22Þ

arranged in increasing order. The overall solution for
PνðzÞ takes the form

PνðzÞ ¼ e−αz ×
�X

n

cnA
ðnÞ
ν e−σnz

�
;

with cn ¼
�X

n

AðnÞ
ν Pνð0Þ

�
: ð23Þ

Because the effect of radiative loss has been factored
out in Eq. (20), the conservation of the total power for
PðlosslessÞ
ν requires σ1 ≡ 0 and, subsequently, Að1Þ

ν ¼
const ¼ 1=N leads to uniform distribution of the
power over all modes. The knowledge of σn allows es-
timation of the characteristic lengths of the disor-
dered region of the fiber beyond which such an
asymptotic state is achieved, ℓðxxÞ ≡ σ−13 , and for
cross-polarized modes, ℓðxyÞ ≡ σ−12 . Assuming that
the fiber is excited with some mode combination
(with total input power equal to unity) of the same
polarization, which we assume to be x for definitive-
ness, and recalling mode numbering convention in
Eq. (10), we obtain

PðxÞðzÞ≡
XN=2−1

ν¼0

P2νþ1 ≈ e−αz ×
1
2
½1þ e−σ2z�; ð24Þ

Fig. 5. (Color online) Panel (a) plots the size of the speckle defined
by Eqs. (6)–(8) with Lx ¼ 0:3mm and Lz ¼ 2mm as a function of
the distance between the diffuser and the core of the photosensi-
tive fiber. Panel (b) compares the values of the characteristic
length ℓðxxÞ−1 ≡ σ3 after which all forward-propagating modes with
one polarization become equally populated. It is found numerically
from Eq. (16) without (solid curve) and with (circles) the delta func-
tion approximation to the order of magnitude estimate (squares) in
Eq. (29). Panel (c) compares the amplitude of the radiative loss rate
computed from Eq. (18) to the intermode coupling rate σ3. The plot
shows that for the disorder patterns generated withD > 4mm, the
coupling becomes the dominant effect. This conclusion is borne out
by the experimental results in Fig. 3.
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PðyÞðzÞ≡
XN=2

ν¼1

P2ν ≈ e−αz ×
1
2
½1 − e−σ2z�: ð25Þ

The above equations have the following properties.
Without loss and polarization coupling, PðxÞðzÞ ¼ 1
reflects power conservation. In the presence of
absorption PðxÞðzÞ þ PðyÞðzÞ ¼ exp½−αz� exhibits at-
tenuation due to the radiative losses.

In the case when coupling between two orthogonal
subsets of LPmodes of the fiber is weak, σ2 ≪ α ≪ σ3,
Eq. (23) yields PðyÞðzÞ ∼ 0, PðxÞðzÞ≃ exp½−αz� and the
system reaches the state when the power is equally
distributed only over ðN=2Þ modes with initially ex-
cited polarization, x:

P2νþ1ðzÞ ≈ e−αz ×
��

P2νþ1ð0Þ −
2
N

�
e−σ3z þ 2

N

�
;

P2νðzÞ ∼ 0: ð26Þ

The above analysis shows that the redistribution
of the power carried by the forward-propagating
modes can be detected by making the following
observations:

• Making polarization-resolved measurement of
the light intensity at the output surface of the fiber
and averaging it over several disorder configurations
should show that the intensity profile approaches the
limit. Alternatively, the conclusion that a perfect
mixing (in a statistical sense, i.e., Pνðz → ∞Þ → const)
indeed occurs in our experimental system can also be
tested through measurements of the distribution of
the near-field intensity at different spatial locations
for just one realization of disorder. A random sum of
different modes of the fiber

P
νcνEt;νðx; yÞ with Pν ≈

const is expected [17] to result in the Rayleigh nega-
tive exponential distribution of the intensity. In an
optical fiber, however, the coefficients cν are not com-
pletely random because the total power carried by all
modes is constrained by

P
νjcνðzÞj2 ¼ exp½−αz�. This

constraint, similar to the power conservation in
the lossless fibers [23], makes the distribution devi-
ate slightly from the Rayleigh form. As we can see
from Fig. 4, the agreement between theory and ex-
periment is very good, whereas the level of precision
of the experimental data does not allow distin-
guishing between the two theoretical functions—
unconstrained and constrained random sums of all
modes of the fiber.

• The dependence of PðxÞðz ¼ LsÞ;PðyÞðz ¼ LsÞ on
the length of the disordered segment of the fiber,
Ls, is expected to be described by Eqs. (24) and
(25). We observe that the power carried by a particu-
lar mode ν, Pν ¼ βν∬ ½Et;νðx; yÞ · Et;ν0 ðx; yÞ�dxdy is equal
to the product of nearly ν-independent βν ≈ n1k0 and
the field intensity integrated over the surface of the
fiber I. Therefore, even in the case of superposition of
several modes with the same polarization, the area-
integrated intensity at the output facet I ðx;yÞ ¼

∬ jPνcνE
ðx;yÞ
t;ν ðx; yÞj2dxdy ¼ P

ν∬ jcνj2jEðx;yÞ
t;ν ðx; yÞj2dxdy

≈ ð1=n1k0Þ
P

νP
ðx;yÞ
ν is proportional to PðxÞðzÞ and

PðyÞðzÞ given by Eqs. (24) and (25). The outcome of
the fit by these expressions to the experimental data
in Fig. 3 allows one to extract the characteristic mix-
ing length ℓðxyÞ ¼ σ−12 and loss coefficient α.

Approximate expressions for the mixing lengths
can be obtained in a compact analytic form by taking
into account the fact that both the transverse
Et;νðx; yÞ and the longitudinal êzEz;νðx; yÞ modal pro-
files are spread out over the entire core of the fiber.
This observation together with Eq. (11) allows one to
estimate

ZZ
½Et;νðx;yÞ ·Et;ν0 ðx;yÞþEz;νðx;yÞEz;ν0 ðx;yÞ�2dxdy; ð27Þ

≈
� ½n2

coreðω2=c2Þπa2�−1 xx; yy
ðNA=2Þ4½n2

coreðω2=c2Þπa2�−1 xy; yx
: ð28Þ

where a is the radius of the fiber core. In the second
case of the cross-polarized modes, we also used the
fact that the amplitude of the Ez;νðx; yÞ component
is a factor NA=2 smaller compared to the amplitude
of the transverse fields. The approximations in
Eq. (28), σ2;3 ∼ h22;33 and Szjβν − βν0 j ≪ 1 allow us to
obtain our final result in a closed analytical form

ℓðxxÞ−1 ≡ σ3 ∼
Δn

2ncore

πω2SxSySz

c2a2 ¼ Δn

n4
core

λ3UVD
4

λ2a2LxL3
z
;

ℓðxyÞ−1 ≡ σ2 ∼ ℓðxxÞ−1mixing

�
NA
2

�
4
; ð29Þ

where Eqs. (6)–(8) were used.
In Fig. 5(a) we plot the dependence of the speckle

size as a function of the distance D between the dif-
fuser and the fiber core. It is clear that tuning this
parameter allows one to widely tune the characteris-
tic size of the prepared disorder. This is an attractive
feature of the fabrication technique described in
Section 2.

In Fig. 5(b) three expressions for ℓðxxÞ obtained in
this section are compared. As expected, for a small
speckle size (small D), the approximation of Eq. (9)
by a product of delta functions appears to be justified
and gives a quite accurate result when compared to
the direct numerical evaluation of hνν0.

Numerical evaluation of the exact expressions
in Eq. (16) and (22) with the experimentally rele-
vant parameters (Lx ¼ 0:5mm, Lz ¼ 3mm and
D ¼ 0:5 cm) yields σ3 ¼ ℓðxxÞ−1 ≃ 0:15 cm−1, σ2 ¼
ℓðxyÞ−1 ≃ 3 × 10−6 cm−1, and α≃ 0:015 cm−1.

5. Conclusion

We have studied the transmission of light through a
volume-disordered multimode optical fiber. The dis-
order was introduced in the germanium-doped core
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of the fiber via UV radiation transmitted through a
diffuser. The disorder generated in an optical fiber
can be controlled by the experimental conditions,
and it is determined by the speckle size and the value
of the induced difference in the refractive index. The
measurement of the transmission as a function of the
length of the disordered section demonstrates the
uniform distribution of the power over all
forward-propagating modes beyond Ls ¼ 15 cm. For
long sections of a disordered fiber, the experimentally
measured distribution of the near-field intensity at
the output surface of the fiber is well described by
the Rayleigh negative exponential function. The pre-
sented technique provides an easy way to fabricate
different configurations of controlled disorder in op-
tical fibers suitable for applications as a coherent and
incoherent random fiber laser. Although the specific
type of disorder studied in our work leads to mixing
of only forward-propagating modes, the feedback
necessary to produce laser action can be achieved
by surrounding the disordered fiber with Bragg
gratings.

Analysis of Fig. 3 shows that the power transfer
into the cross-polarized modes occurs quite effi-
ciently with ℓðxyÞ ≃ ℓðxxÞ. This differs from the predic-
tions of the coupled-mode theory developed in
Section 4 that gives ℓðxyÞ ≫ ℓðxxÞ. We attribute this en-
hanced cross polarization coupling to the (i) birefrin-
gence effect induced by the bending of the fiber, and
(ii) strongly anisotropic disorder pattern defined by
Eq. (9). Indeed, although no polarization mixing is
observed in the blank fibers (before the disorder is
introduced), to generate the statistical ensemble of
different realization, the 30 cm long fiber sample
was displaced in the lateral directions, while both
of the sample’s ends were fixed by fiber clips. As a
result of fiber bending and tension, a pronounced bi-
refringence was induced. For our experimental con-
dition, we estimate the minimum radius of the
bending as 250 cm, which gives birefringence ofΔn ∼

4 × 10−5 [24]. Formally, the induced birefringence en-
ables coupling via the transverse components of the
modes’ field that is expected to remove the small fac-
tor ðNA=2Þ4, which leads to the ℓðxyÞ ≫ ℓðxxÞ condition
in Eq. (28). The effect of induced birefringence will be
reported in a separate publication.
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