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We investigate the relationship between channel and spatial mesoscopic correlations in volume-disordered
waveguides. We emphasize the importance of the surface escape function, which describes the distribution of
transmitted flux among different channels, and we derive expressions for spatial field and intensity correlation
functions directly from the channel ones.
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I. INTRODUCTION

Mesoscopic fluctuations, such as universal conductance
fluctuations,1 are rooted in nonlocal correlations2,3 that ap-
pear due to the interference effects when a wave undergoes
multiple-scattering events in a random medium. Although
common to both electrons and electromagnetic �EM� waves,
the latter gives more detailed information about transport,4,5

for example, the mesoscopic correlation of optical fields
leads to readily observable speckles.6

The ability to study the localization-delocalization transi-
tion as a function of system length, made the quasi-one-
dimensional �Q1D� geometry �a disordered wire/waveguide�
a fruitful test bed for studying mesoscopic phenomena.7–9

Due to quantization of the transverse momentum, wave
transport can be described in terms of a transmission matrix
tab, which is related to the angular transmission coefficient
Tab= �tab�2. The latter measures the flux transmitted in
channel b when a unit of flux enters via channel a. Summing
over the channel indices gives the transmission Ta=�bTab
and the dimensionless conductance:10

T = �
ab

Tab = �
ab

kakbTab; g � �T� . �1�

Here the ka are longitudinal components of the momentum,
necessary for the proper11 treatment of incoming/outgoing
fluxes, and Tab is the squared amplitude of mode b. For EM
waves, Tab ,Ta, and T are directly measurable.12,13

Diagrammatic1 and Dorokhov-Mello-Pereyra-Kumar
�DMPK� �Refs. 14 and 15� techniques were highly success-
ful in studying mesoscopic phenomena and were applied to
investigate the nonlocal correlations.16,17 In the framework of
DMPK theory, the correlations in fluxes exiting random me-
dium through different momentum channels were obtained17

as

�TabTa�b��DMPK =
�T�2

N4 �A�c��aa��bb� + B�c���aa� + �bb�� + A�c�	 ,

�2�

where N is the number of channels in the waveguide. Al-
though the coefficients A�c� and B�c� depend on the sample
length, the structure of Eq. �2� remains the same. For com-
parison with microwave experiments, the correlation be-
tween intensities transmitted from R0 and R0+�R on the
input surface and measured at two spatially separated points

r0 and r0+�r at the output surface of random medium can
be obtained18,19 as

�I�R0 + �R,r0 + �r�I�R0,r0��
�I�R0,r0��2 = A�r�f2��R�f2��r� + B�r�

��f2��R� + f2��r�	 + A�r�,

�3�

where f��r� is a field correlation function,20 which takes the
form,

f��r� �
�E�R0,r0 + �r�E��R0,r0��

�I�R0,r0��

= 

��BJ0�k�r� + 2 sin�k�r�/k�r

��B + 2
2D

2J1�k�r�/k�r + 2�B sin�k�r�/k�r

1 + 2�B
3D ,� �4�

at the surface of the random medium.21,22 In this expression,
Jn�x� are Bessel functions of the first kind, k=2� /� is the
wave number, and �B=zB /� is the extrapolation length zB
5,23–25 measured in units of the transport mean free path
�MFP� �.

In this work we show that although Eqs. �2� and �3� share
structural similarity, one does not follow from the other. The
same conclusion holds for the field correlation functions �Eq.
�4�	 and the DMPK prediction,

�tabta�b��DMPK =
�T�
N2 �aa��bb�. �5�

We also show that the agreement can be achieved with
an ad hoc multiplicative correction of the DMPK result
�Eqs. �2� and �5�	. The corrections are given by the surface
escape function,5,25,26 also known as a Chandrasekhar
function.27 With such correction, we derive Eqs. �3� and �4�
directly from the corrected version of Eqs. �2� and �5�.

To begin, we first note the effects of several phenomena
that occur in/due to the proximity of sample boundary that
have been studied in the context of mesoscopic transport: �i�
The very definition of dimensionless conductance28 depends
on the treatment of leads �sections of the waveguide without
scattering centers� and attached reservoirs;10 It has been
shown11 that Eq. �1� describes the experimentally relevant
situations; �ii� Tunneling through an interface barrier and the
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concept of “sticking probabilities” is a convenient method of
describing coupling to the mesoscopic quantum dot
systems,9,29 however, it is not directly relevant in context of
this work; �iii� Diffusion approximation breaks down at the
distances on the order of � from the boundaries of random
medium. However, flux-conserving diffusive treatment �an
approximation� is possible by requiring the intensity to turn
into zero at the distance zB outside of the sample;5,23,25 �iv�
Related to �iii�, it has been shown5,21,25–27 that the energy
fluxes are not distributed equally among the transverse mo-
mentum channels, and �Tab�= ��T� /N2��a�b. Here �a�1 is
the surface escape function. This is indeed a surface effect
because �a is independent of the system length.26 In this
paper, we argue that the equivalent channel approximation
�ECA� of the DMPK approach is the source of the disagree-
ment between Eqs. �2� and �5� and Eqs. �3� and �4�, because
it leads to �a=1.

II. NUMERICAL METHOD

In our numerical simulation we consider a two-
dimensional �2D� waveguide filled with a random medium
disordered array of parallel dielectric cylinders filling the
space between two metallic plates. We use a finite difference
time-domain method to calculate the response of our system
to pulsed excitation, followed by Fourier transformation,
which gives us the desired continuous-wave response22 so
that tab can be computed.30 Because the system studied is
Q1D, samples with values of g in the range �0.4–4� were
obtained by varying the lengths L of the random medium. To
ensure that the results obtained do not depend on the micro-
scopic structure of disorder, we operate in the regime of lo-
cally weak disorder, k�	1. To analyze statistics of mesos-
copic transport, ensembles of 104–105 random realizations
were considered.

III. ON APPLICABILITY OF EQUIVALENT CHANNEL
APPROXIMATION

DMPK describes Q1D random medium as a sequence of
macroscopically thin slices. It assumes that after scattering in
one slice, all transverse momentum channels become com-
pletely mixed and, thus, are statistically equivalent. Math-
ematically, each slice is described by a random transfer ma-
trix with only time-reversal and flux conservation being the
constraints.7 This isotropy assumption is a mathematically
convenient anzatz but it lacks a microscopic foundation.26,31

The obtained results depend only on the number of channels,
N, and are independent of the dimensionality of the wave-
guide �and, in three-dimensional �3D�, also of its shape�.

The validity of the isotropy assumption, or ECA, was
questioned before26,31,32 and has recently received a renewed
focus.33 It has been linked to DMPKs inability31,33 to ad-
equately describe diffusion in the transverse direction, as
well as to the difference in the definitions of the mean-free
path in DMPK and in transport theory.9,26 The modified
DMPK formalism, free of the ECA, yields33 complex equa-
tions, which resist an analytical treatment.

A. Channel dependence of ŠTab‹

Here, we directly verify earlier reports25,26,32,33 that the
angular transmission has strong channel dependence. Fur-
thermore, we show, c.f., Fig. 1, that the dependence,

�Tab� =
�T�
N2 �a�b, �6�

is described by the Chandrasekhar function as found for both
the slab5 and waveguide26 geometries,

��
� = C exp�−



�


0

�/2 ln�1 − cos ���/sin ��D−2�
cos2 � + 
2 sin2 � � , �7�

where D=2,3 is the dimensionality of the waveguide,
�a���ka /k�, and C is chosen so that �a is normalized
�a�a=N. Throughout this work, �. . .� implies averaging only
over disorder configurations for given channel indices �a ,b�.
The agreement between Eq. �6� and the numerical data in
Fig. 1 is achieved with no adjustable parameters for samples
with different N, g, and �, with only the condition L	� to
avoid the ballistic regime.26 The deviations from � in Fig. 1
are attributed to limited statistics and the finite number N of
channels.

Such significant channel dispersion should not come as a
surprise as it reflects fundamental wave coherence
properties34 and has a long history in radiative transfer
theory �RTT�.27 For either the slab geometry or the Q1D
geometry with N	1, �̃�
��
+�B is known to be a good
approximation with �B=zB /� as before. �B equals to 0.818
and 0.710 �in 2D and 3D, respectively� arise in RTT, whereas
�B=� /4�0.785 and 2 /3�0.667 are obtained in the diffu-
sion approximation.5,25,26 Also, the persistent channel depen-
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FIG. 1. �Color online� Mean value of transmission normalized
by the conductance �Ta� / ��T� /N� as obtained from numerical
simulations in samples with different N, g, and �: �i� �−N=19 and
g=3.5; �ii� �−N=19 and g=1.5; �iii� �−N=19 and g=0.5; �iv�
�−N=15 and g=0.8; �v� �−N=28 and g=3.0; and �vi�
�−N=19 and g=4.5, with � being twice as long as in the previous
samples ��i�-�v�	. The data agree with ��
� given by Eq. �7� and its
approximation �̃�
 ,�B=0.818� �thick solid and dashed lines� with-
out any adjustable parameters. Thin dashed line �a constant� de-
picts the equivalent channel approximation used in DMPK.
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dence of �Ta� was observed in the simulations of Ref. 35 but
was interpreted as a finite N effect.

B. Channel-channel correlations

Diagrammatic perturbative calculations of the channel
correlations in the slab geometry4,5,16 give a general relation
�TabTa�b��� �Tab��Ta�b��. Here a ,b denote different transverse
momenta. The averages �Tab� appear when incoming and
outgoing paths are paired into diffusons5—the only contribu-
tions that survive averaging over disorder. Therefore, the
nontrivial channel dependence discussed in the above section
is expected to affect the channel-channel correlation as well.
Our numerical simulation in Fig. 2 show that DMPKs ex-
pressions for �TabTa�b��DMPK and �tabta�b��DMPK, c.f., Eqs. �2�
and �5�, should be modified to include the multiplicative con-
tribution by the escape function as

�tabta�b�
� � =

�T��a�b

N2 �aa��bb�, �8�

�TabTa�b�� =
�T�2�a�b�a��b�

N4 �A�c��aa��bb� + B�c���aa� + �bb��

+ A�c�	 . �9�

Upon multiplication by �a,bs, the correlations regain a depen-
dence on waveguide dimensionality and shape �in 3D�. This
is in contrast to DMPK where only the number of channels
enters as a sole parameter.

IV. STATISTICS OF TRANSMISSION COEFFICIENTS

The fact that the ensemble-averaged quantity Tab has a
dependence on channel indices �Eq. �6�	 makes one also
question DMPK’s assumption of the statistical equivalence

of different channels. This is no longer a trivial question
because, e.g., in surface disordered waveguides, a strong
channel dependence of the MFP can even lead to the coex-
istence of diffusive and localized regimes36 in different chan-
nels of the same sample. However, in the case of volume-
disordered waveguide �considered in this work� disorder-
induced channel mixing is expected26 to lead to some
equilibration for L	�. Although independence of �a in Eq.
�6� of g and L may be considered a manifestation of equili-
bration, it does not require a similarity of statistics in differ-
ent channels.

Our simulations demonstrate, c.f., Fig. 3, that all channels
indeed become statistically equivalent when the transmission
coefficients are normalized by their ensemble averages. In
other words, P�sab�Tab / �Tab�� and P�sa�Ta / �Ta�� are inde-
pendent of channel indices. It suggests that removing the �a,b
factor is sufficient to enforce the ECA. It should be noted
that although the same notation sab was also used in an
analysis of microwave experiments,12 its definition is quite
different. There, sab was defined as the ratio between local
intensity to its ensemble-averaged value. Equivalence of the
statistics of the normalized intensity at different spatial
points does not imply statistical equivalence of the
normalized angular-resolved transmission coefficient
sab�Tab / �Tab�. The latter follows directly from our numeri-
cal simulations �Fig. 3�.

The results of Fig. 3 suggest that ECA should be
applicable to the renormalized transmission matrix
ab= tab / �Tab�1/2� tab / ��a�b	1/2. It is thus tempting to associ-
ate ab with tab

�DMPK� in the DMPK approach and generate the
corresponding angular transmission, the transmission, and
the conductance. However, one can see that sab��ab�2 is no
longer required to obey the same composition rules
sa� 1

N�bsab as the original quantities Ta=�bTab �the unim-
portant N−1 factor is due to the normalization�. Indeed,
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FIG. 2. Channel intensity correlations �TabTa�b�� normalized by
�Tab� and �Ta�b�� to remove dependence on �a,b. General structure
of the resulting correlator is described by Eq. �9� and remains the
same in all studied samples, regardless of g. A sample with g=0.4
and N=19 is shown in the figure as an example. To visualize the
four-dimensional array a�=7, b�=12 was selected.
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FIG. 3. �Color online� To demonstrate the statistical equivalence
of the normalized transmission coefficients, two groups of
a= �1..N	 histograms P�sab�Tab / �Tab�� �with b set to one as an
example� and P�sa�Ta / �Ta�� are depicted for the sample with
g=3.5 and N=19. Both groups are successfully fitted by expres-
sions obtained in Ref. 37 with the help of random matrix theory.
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1

N
�

b

sab =
N

�T��a
�

b

Tab

�b
� sa =

N

�T��a
�

b

Tab. �10�

Note an additional �b
−1 factor in the expression that involves

sab. We can quantify the mismatch by introducing the quan-
tity,

�sa
2 =��sa −

1

N
�

b

sab�2� � 0, �11�

which is not equal to zero due to presence of mesoscopic
correlations in different channels discussed in the previous
section. Knowledge of Eq. �9� is needed to derive the follow-
ing scaling relations:

�sa
2 = �A�c� + B�c�	

� − 1

N
, �12�

where �= �1 /N��a�a
2. The numerical value of � can be com-

puted in the N→� limit, when �a can be replaced with an
appropriate integration with a continuous function ��
�
given by Eq. �7�. We find � to be 1.022 and 1.035 for 2D and
3D waveguides, respectively. Thus, �−1�0.

Importantly, the exact cancellation of O�N0� contributions
to Eq. �12� occurred because the channel-channel correla-
tions have the particular form given by Eq. �9�. One can
easily verify that the same conclusion can be made for quan-
tities 1

N�asa and s= 1 / �T��abTab. The remaining O�N−1�
term is nonzero because of inapplicability of the ECA,
�a�1, which leads to �−1�0.

Because of cancellation of the O�N0� terms in Eq. �12�,
the deviations vanish in the N→� limit. Therefore, in
volume-disordered waveguides with a large number of open
channels we expect the quantities:

tab
�DMPK�, Tab

�DMPK�, Ta
�DMPK�, T�DMPK�, �13�

to have the same statistical properties as

tab

��a�b	1/2 ,
Tab

�a�b
,

Ta

�a
, T , �14�

respectively. This is the main conclusion of this section.

V. SPATIAL CORRELATIONS

In the previous sections we found the corrected channel
correlation functions Eqs. �8� and �9� and verified that with
the proper renormalization �Eqs. �13� and �14�	 equivalent
channel approximation used in the DMPK approach can be
applicable. We will now use Eqs. �8� and �9� as the starting
point for deriving the spatial field and intensity correlation
functions.

The purpose of this exercise is threefold. First, we want to
confirm that the obtained correction is consistent with the
diagrammatic Green’s function results, Eqs. �3� and �4�. Sec-
ond, we would like to establish the relation between A�c�, B�c�

and A�r�, B�r�. Finally, using the fact that Eq. �9� was derived
nonperturbatively,17 we would like to show that Eq. �3� is
applicable for systems with any value of dimensionless

conductance g. The latter is important because a previous
derivation18,19 of this equation relied on the smallness of g−1.

A. Field correlations

The electric field at r on the output surface of the sample
produced by a point source placed at R on the input surface
can be related to the complex transmission matrix tab as

E�R,r� = �
ab

�a�R�
ka

1/2 tab
�b�r�
kb

1/2 , �15�

where �a
�2D��r�=�2 / Wsin�� / Way� is �for a 2D waveguide

of width W� the transverse mode of the waveguide and
1�a�N is an integer used to enumerate the mode. In
obtaining the above equation we resolved the delta
function into transverse modes on the input surface.
�kakb�−1/2 appeared because tab by itself describes
the fluxes and not the fields. In the next step we write
E�R0+�R ,r0+�r�E��R0 ,r0� in terms of transfer-matrix el-
ements and perform two averages. The first is averaging over
the statistical ensemble of disorder realizations as in Eq. �8�.
After this we further average over the cross section of the
waveguide. The latter eliminates the dependence on R0 and
r0. As a result we obtain,

�E�R0 + �R,r0 + �r�E��R0,r0��
�I�R0,r0��

= f��R� � f��r�

= � 1

�
�

a

�a


a
�a��R��� 1

�
�

b

�b


b
�b��r�� , �16�

where the normalization constant � is given by

� = �
a

�a


a
. �17�

For a waveguide with a large number of channels, the sum-
mation in Eq. �16� can be transformed to a continuous inte-
gral, which depends on the dimensionality of the system �2D
and 3D, respectively� as

f��r� � 
0

1 ���1 − s2�
�1 − s2 �cos�ks�r�

sJ0�ks�r� �ds , �18�

without the normalization. Substitution of �̃�
��
+�B in
the integrand and a subsequent integration gives exactly Eq.
�4�. This is the result sought and proves that the corrected
Eq. �8� is consistent with Eq. �4�.

Finally, we would like to comment on the physical mean-
ing of the ECA in the context of the spatial field correlation
function. The integral in Eq. �18� can be reevaluated under
the ECA, �a�1. We find,

f�a�1��r� = � J0�k�r� 2D

sin�k�r�/k�r 3D .
� �19�

The expression obtained coincides with the results found in
Ref. 20 for the spatial field correlation function inside the
random medium if a multiplicative factor exp�−�r /2�	 is

ALEXEY YAMILOV PHYSICAL REVIEW B 78, 045104 �2008�

045104-4



included. For 3D systems, the difference between Eqs. �19�
and �4� has been recognized in Ref. 21, where an argument
has been presented on why field correlations should not de-
pend on � explicitly, as in Ref. 20.

The expression in Eq. �4� for the spatial field correlation
function has been tested in both numerical simulations38 and
experiment.39 Figure 4 shows excellent agreement between
our numerical data and Eq. �4� with no adjustable param-
eters. The parameter �B was set to 0.818 as predicted by
RTT. In contrast, Eq. �19� could not fit the data in Fig. 4. We
attribute this to the inapplicability of the �a�1 approxima-
tion �ECA� made in its derivation.

B. Intensity correlations

As in the case of field correlations above, the starting
point in obtaining the spatial intensity correlator is Eq. �15�.
Using the definition, as in Eq. �3�, we see that it involves the
channel correlator �ta1b1

ta2b2

� ta3b3
ta4b4

� �. For waveguides filled
with a weakly scattering random medium �k�	1�, as con-
sidered in this work, a nonzero contribution is obtained only
when the channel indices are paired into diffusion contribu-
tions. We find four possible pairings,

�a1a2
�b1b2

�a3a4
�b3b4

+ �a1a4
�b1b4

�a2a3
�b2b3

+ �a1a2
�b1b4

�a3a4
�b2b3

+ �a1a4
�b1b2

�a2a3
�b3b4

. �20�

The first two lead to Eq. �9�, whereas the last two require
knowledge of the new correlator �tabtab�

� ta�b�ta�b
� �. In the

g	1 limit, its leading contributions can be analyzed using
diagrammatic technique as in Ref. 19. By comparing the
diagrams in two types of correlators in Fig. 5, we found the
following correspondence:

�tabtab�
� ta�b�ta�b

� � =
�T�2

N4 �a�b�a��b�

��B�c��aa��bb� + A�c���aa� + �bb�� + B�c�	 ,

�21�

with the same coefficients A�c� and B�c� as in Eq. �9�. This
finding is fully supported by our simulations for all studied
samples.

Further calculations include the following steps: First, we
evaluate four contributions in Eq. �20� and substitute the ap-
propriate correlators from Eqs. �9� and �21�. Then we aver-
age over the midpoint positions R0 and r0 and normalize the
expression by �I�R0 ,r0��2. We get,

�I�R0 + �R,r0 + �r�I�R0,r0��
�I�R0,r0��2

= A�c�f2��R�f2��r� + B�c��f2��R� + f2��r�	 + A�c�,

�22�

with the same f��r� as in Eq. �16�. Also, we retained only
the terms of O�1 /N0�. Comparing Eqs. �3� and �22�, we ob-
tain the desired result A�r��A�c� and B�r��B�c�.

VI. CONCLUSION

In this work we studied both analytically and numerically
field and intensity correlations in wave transport through
volume-disordered waveguides. It was shown that channel
correlation functions obtained in the framework of the
DMPK formalism, Eqs. �2� and �5�, are not consistent with
their spatial counterparts found with the Green’s function
technique �Eqs. �3� and �4�	. We related the discrepancy to
the inapplicability of the equivalent channel approximation
in the DMPK. We demonstrated that an agreement can be
recovered with the help of a surface escape function �Eqs. �6�
and �7�	, which describes the distribution of transmitted flux
among different channels of the waveguide. As a result, we
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FIG. 4. �Color online� Squares depict the spatial field correlation
function �defined in Eq. �4�� obtained in numerical simulation in the
sample with N=19 and g=1.5. The agreement with the right-hand
side of Eq. �4� �thick solid line� is reached without any fitting pa-
rameters. �B is set to 0.818 as found in RTT. No agreement is found
with the thin solid line that depicts the expression in Eq. �19� found
in the equivalent channel approximation.
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FIG. 5. Two types of channel correlators and

their leading diagrams in a 1 /g perturbation se-
ries that appear in the derivation of the spatial
intensity correlation function �Eq. �22�	. The
known expression for �TabTa�b�� is shown in the
first line, see e.g. �Ref. 5�. Leading contributions
to the correlator �tabtab�

� ta�b�ta�b
� � can be obtained

by swapping the incoming and outgoing indices
as shown in the second row, Eq. �21� follows.
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derived expressions for spatial field and intensity correlation
functions from the corrected channel functions �Eqs. �9� and
�8�	. In the derivation we encountered new correlator �Eq.
�21�	, which was found with the diagrammatic analysis �Fig.
5	. The results obtained were verified in numerical simula-
tions.

We also related the coefficients that enter into the expres-
sion for the channel �Eq. �8�	 and spatial intensity �Eq. �3�	
correlations, namely, A�r��A�c� and B�r��B�c�. Importantly,
because the expression for the channel intensity correlations
is known nonperturbatively,17 our derivation shows that Eq.
�3� should hold also in the localized regime. Its applicability

in the crossover and the localized regime was indeed found
in numerical simulations22 and microwave experiments.40

Albeit the studied correlations are directly measurable
only for electromagnetic waves. Our results are also appli-
cable to noninteracting electronic systems, e.g., a volume-
disordered wire, where time-reversal symmetry is preserved
and dephasing mechanisms can be neglected.
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