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Slow-light effect in dual-periodic photonic lattice
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We present analytical and numerical studies of a photonic lattice with short- and long-range harmonic modu-
lations of the refractive index. Such structures can be prepared experimentally with holographic photolithog-
raphy. In the spectral region of the photonic bandgap of the underlying single-periodic crystal, we observe a
series of bands with anomalously small dispersion. The related slow-light effect is attributed to the long-range
modulation of the photonic lattice that leads to formation of an array of evanescently coupled high-Q cavities.
The band structure of the lattice is studied with several techniques: (i) transfer matrix approach; (ii) an analy-
sis of resonant coupling in the process of band folding; (iii) effective-medium approach based on coupled-mode
theory; and (iv) the Bogolyubov–Mitropolsky approach. The latter method, commonly used in the studies of
nonlinear oscillators, was employed to investigate the behavior of eigenfunction envelopes and the band struc-
ture of the dual-periodic photonic lattice. We show that reliable results can be obtained even in the case of large
refractive index modulation. © 2008 Optical Society of America

OCIS codes: 230.4555, 230.5298, 350.5500.
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. INTRODUCTION
ptical pulse propagation in dielectrics is determined by

he group velocity vg=d��K� /dK, where the dispersion
�K� relates the frequency � and the wave-vector K inside

he medium. One of the appealing features of photonic
rystals has become the possibility to alter the dispersion
f electromagnetic waves [1] so that in a certain spectral
egion vg becomes significantly smaller than the speed of
ight in vacuum. This “slow-light” effect [2] attracted a
reat deal of practical interest because it can lead to low-
hreshold lasing [3–5], pulse delay [6,7], optical memories
8], and enhanced nonlinear interactions [9–11]. Several
pproaches to obtaining low dispersion in photonic crystal
tructures have been exploited.

(i) At frequencies close to the photonic band edge, ��K�
ecomes flat and group velocity approaches zero due to
he Bragg effect at the Brillouin zone boundary. This
roperty has been extensively studied and used in prac-
ice to control the spontaneous emission [12] and gain en-
ancement in lasers [3–5]. However, a large second-order
ispersion (i.e., dependence of vg on frequency) in the vi-
inity of the band edge leads to strong distortions in a
ulsed signal that makes this approach unsuitable for,
.g., information processing applications.

(ii) High-order bands in two- and three-dimensional
hotonic crystals can have small dispersion not only at
he Brillouin zone boundary but also throughout the band
13,14] where the second-order dispersion can be signifi-
antly reduced. Nevertheless, these high-frequency photo-
ic bands allow little control over vg and are not spec-
rally isolated from other bands. These drawbacks and
he increased sensitivity to fabrication errors [15] limit
he practical value of this approach.
0740-3224/08/040599-10/$15.00 © 2
(iii) Based on the coupled resonator optical waveguide
CROW) [8,16–18] idea, a low-dispersion photonic band
an be purposefully created via hybridization of high-Q
esonances arising from periodically positioned structural
efects [19–21]. This spectrally isolated defect band is
ormed inside the photonic bandgap, with a dispersion re-
ation given by

��K� = ��1 + � cos�KL��. �1�

ere � is the resonance frequency for a single defect, � is
he coupling constant (assumed to be small), and L is the
pacing between defects. These adjustable parameters al-
ow one to control dispersion in the band, and hence vg,
ithout significant detrimental effects due to second-
rder dispersion.

A periodic arrangement of structural defects in the pho-
onic crystal, described in (iii), creates a photonic super-
rystal (PhSC) with short-range quasi-periodicity on the
cale of the lattice constant and long-range periodicity on
he defect separation scale [22–29]. We have recently pro-
osed a PhSC with dual-harmonic modulation of the re-
ractive index [30] [see Eq. (2)] that can be fabricated
31,32] via a single-step interference photolithography
echnique. Because all resonators are produced at once,
ur design minimizes fabrication error margin and en-
ures the large-scale periodicity essential for hybridiza-
ion of the resonances of individual cavities in an experi-
ent.
The purpose of this work is to theoretically investigate

he optical properties of a one-dimensional PhSC using a
ombination of analytical and numerical techniques. We
onsider the dielectric function that can be produced with
he interference photolithography method
008 Optical Society of America
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��x� = �0 +
��/2

1 + �
�1 + � cos�2�x/L���1 + cos�2�x/a��. �2�

ere �0 is the background dielectric constant. The ampli-
ude of the short-range (on scale a) modulation gradually
hanges from ����1−�� / �1+��� to ��. L=Na sets the scale
f the long-range modulation; N�1 is an integer.

Each of the four theoretical techniques used in this
ork has its strengths and its weaknesses. The numerical

ransfer-matrix approach, employed in Section 3, can deal
ith any modulation of the refractive index. Unlike the
ther methods, it also allows us to study the transmission
pectra of finite segments of the PhSC. One of the impor-
ant conclusions obtained in Section 3 is the possibility of
cale separation in the eigenstates of a PhSC with a large
odulation of the refractive index (large ��). Inability to

btain an analytical description of the spectrum of the
igenstates or their spatial profiles is a limitation of this
ethod.
With the help of the resonant approximation consid-

red in Section 4, we analytically obtain the spectral po-
ition and the width of photonic bandgaps separating the
at bands under consideration. This information gives

mportant physical insight into how the resonantly in-
reased band-to-band interaction (repulsion) leads to a re-
uction of band dispersion. The applicability condition
see Eq. (14)] for this approach does not allow us to extend
he treatment to the experimentally relevant case of large

and appreciable ��.
In Section 5 we apply the effective-medium approxima-

ion of [26] to our proposed dual-periodic crystals with
arge N. This method is related to the coupled-mode
heory (CMT) [33] and treats the �� term in Eq. (2) as a
erturbation. In our case of large ��, the effective-
edium approximation accurately describes the eigen-

tates of the PhSC on a qualitative level. The quantiza-
ion condition, Eq. (20), gives intuitive results for the
pectrum.

In Section 6, similar to the previous approach, we
ransform the Maxwell equations to amplitude and phase
orm. Then, without making the assumption ���1, we
pply the scale separation technique of Bogolyubov–
itropolsky to obtain a system of nonlinear differential

quations for the amplitude and the phase of eigenfunc-
ions. The spectrum of the system can be found numeri-
ally by requiring periodicity of the eigenfunction. We
how that this method agrees quantitatively with direct
imulations by the transfer-matrix approach of Section 3.
ection 7 concludes our study with a summary of the re-
ults obtained within the above approaches.

. EXPERIMENTAL REALIZATIONS OF A
hSC

n our previous work [30] we proposed employment of ho-
ographic photolithography to fabricate a modulated pho-
onic crystal, or PhSC. The experimental quantum dot ul-
raviolet photolithography (QDPL) technique—a
ottom-up technique that allows synthesis of quantum
ots and other nanoparticles in selected regions of porous
atrices [31,32]—is suitable for this purpose. The change

f the dielectric function in such systems is related to the
ocal density of quantum dots, which is proportional to the
ocal intensity of the electromagnetic wave used when ex-
osing the sample. Manipulation of the four lithographic
eams allows for easy control over the structural proper-
ies of the resultant systems, as described in [30]. Such a
hSC has dual-harmonic modulations, short and long
ange, similar to that described by Eq. (2). The latter
unctional form was chosen to enable an analytic treat-
ent and differs slightly from the expression in [30].
onetheless, it shows the same spectral composition and
odulation property. The discrepancy between the two

orms is expected to cause only small deviations from the
nalytical results obtained in this work. Furthermore, the
ifferences become insignificant in the limit N�1.
Our estimates show that structures operating at �
800 nm would require a�400 nm and L=Na�20 	m.
s it has been demonstrated in [18], already a dozen reso-
ators can be employed as a functional delay line. With
he holographic photolithography technique, it should be
airly straightforward to create hundreds of PhSC cavities
of size L).

Dual-periodic harmonic modulation of the refractive in-
ex can also be experimentally realized in optically in-
uced photorefractive crystals [34–36]. Although, the in-
ex contrast obtained is several orders of magnitude less
han with QDPL [31,32], the superlattices created in pho-
orefractive materials offer the possibility of dynamical
ontrol—a feature lacking in the quantum dot system.
hile the study of dynamical and nonlinear phenomena

n dual-periodic lattices is of significant interest, it goes
eyond the scope of the present publication and will not
e considered in this work.

. TRANSFER MATRIX ANALYSIS
he transmission–reflection spectrum of a one-
imensional PhSC of finite length, and the band structure
f its infinite counterpart, can be obtained numerically
ia the transfer-matrix approach. Propagation of a field
ith wave vector k=� /c through an infinitesimal seg-
ent of length dx is described by the transfer matrix [37]

M̂�x,x + dx� = � cos�kn�x�dx� n−1�x�sin�kn�x�dx�

− n�x�sin�kn�x�dx� cos�kn�x�dx� � ,

�3�

here we have assumed that the refractive index n�x�
oes not change appreciably over that distance. The ma-
rix M̂�x ,x+dx� relates the electric field and its spatial de-
ivative �E , �1/k� �dE /dx�	 at x+dx and x. The total trans-
er matrix of a finite system is then given by the product
f individual matrices

M̂tot = 

x=0

L

M̂�x,x + dx�. �4�

ince in our case the refractive index n�x�=�1/2�x�, Fig.
(a), is not a piecewise constant (in contrast to [26,27])
ut a continuous function of coordinate, one has to resort
o numerical simulations. In what follows we apply either
cattering or periodic boundary conditions to obtain the
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ransmission coefficient and Bloch number K���, respec-
ively.

Figure 2(a) plots the transmission coefficient through
ne period of the dual-periodic system shown in Fig. 1. A
eries of progressively sharper resonances occur on the
ower or upper edge of the spectral gap of the underlying
ingle-periodic structure. Whether the peaks occur at the
ower or upper band edge depends on the particular defi-
ition of the unit cell, as shown in the inset of Fig. 2(a).
ne can obtain insight into this effect by examining the
odulation of the spectral position of the “local” photonic

andgap (PBG) with the position as shown in Fig. 1(b).
his analysis is meaningful on a length scale of the order
f a��x�L�Na. This condition can be satisfied in our
ase of slow modulation with large N. At frequencies such
s Ai

�N� in Fig. 1(b), wave propagation is allowed in the vi-
inity of x=aN�1/2+m�, whereas at the regions x
aN�m� it is locally forbidden, m being an integer. When
onsidering a segment of the lattice with 0
x
Na, reso-
ant tunneling via electromagnetic states Ai

�N� of the cav-
ty at the geometrical center leads to low-frequency peaks
n the transmission coefficient, indicated by the solid
urve in Fig. 2(a). On the other hand, transmission
hrough the segment −Na /2
x
Na /2 exhibits a series
f sharp resonances. These correspond to tunneling via
�N� cavity states in the high-frequency region.

ig. 1. (Color online) (a) Dependence of the index of refraction
n a dual-periodic photonic crystal as defined by Eq. (2). We used
0=2.25, ��=1, N=80, and the modulation parameter � is equal
o 0.25. (b) Local (position-dependent) photonic bandgap diagram
or n�x� in (a). Ai

�N� and Bi
�N� mark the frequencies of the foremost

hotonic bands on the long- and short-wavelength sides of the
hotonic bandgap of the corresponding single-periodic crystal.
i

The transmission coefficient through a finite segment
f length L (equal to one period) can be related to the
and structure of the corresponding periodic lattice [27]
s

cos�K���L� = Re� 1

t���� �
1

�t����
cos������, �5�

here we have introduced the phase of the transmission
oefficient ���� through t= �t �exp�i��. Figure 3 shows that
ybridization of the cavity resonances considered above

eads to the formation of flat photonic bands. Their low
ispersion and small group velocity may be exploited [30]
or practical applications.

In the vicinity of an isolated transmission resonance,
��� is given by the Lorentzian

t��� =
�− 1�N��/2�

i��/2� − �� − �0�
, �6�

here � is the full width at half-maximum (FWHM) of
he resonance and �0 is the resonant frequency. Substitu-
ion of Eq. (6) into Eq. (5) gives the flat band described by

��K� = �0�1 ± � cos�KL��, �7�

here �=� /2�0=1/Q�1, and Q is the cavity Q factor.
hus, the decrease of group velocity in the PhSC is di-
ectly related to the increase of confinement and the de-
rease of coupling between neighboring cavities. In our
hSC both these factors are described by the same

ig. 2. (Color online) (a) Transmission coefficient through a fi-
ite segment of length L (one period) of the periodic superstruc-
ure defined in Fig. 1. Solid and dashed curves correspond to 0
x
Na and −Na /2
x
Na /2 segments [shown in the inset of

anel (b)], respectively. (b) Solid and dashed thin curves plot the
orresponding phase of t���. Bold line depicts the Bloch number
���
a of the infinite crystal computed using Eq. (5).



p
t
m
a
e
c
s
i
t
v
r
i

i
o
e
s
p
d
t
2

w
d
m
t
�
l
t

+
�

m
c
T
(
o
o
T
i

a
g

H
b
t
n
a
h
K

c
�
m
i
(
t

f
g
n
c
T
i
T
b
p
l
l
s

4
F
d
s
d
o
h

i
h
t
�
s

F
�
r
b
C
1

602 J. Opt. Soc. Am. B/Vol. 25, No. 4 /April 2008 Yamilov et al.
arameter—the cavity Q factor. In a single-periodic pho-
onic crystal of finite length, the Q factor of a band-edge
ode depends on the system size. Comparing Figs. 1(b)

nd 3, one can see that Ai
�N� ,Bi

�N� modes are in fact band-
dge modes in their intervals of free propagation. In our
ase L gives the characteristic length and, as we demon-
trate below, also determines the mode frequency. As N
ncreases, the eigenfrequencies of the modes shift towards
he bandgap. The associated decrease of the local group
elocity contributes to an increase of the Q factor of the
esonators and to a further reduction of the group velocity
n Ai

�N� ,Bi
�N� bands in the N→� limit.

Equation (5) suggests that the dispersion relation ��K�
s independent of how the segment of length L (the period
f our structure) is chosen. However, the transmission co-
fficient through the 0
x
Na and −Na /2
x
Na /2
egments of the crystal shows very different spectral com-
osition [Fig. 2(a)]. To understand how these markedly
ifferent functions lead the same ��K�, we will analyze
he phase of the transmission coefficient �, shown in Fig.
(b).
In a one-dimensional periodic system such as ours, the

avenumber K��� in Eq. (5) is equal to the integrated
ensity of electromagnetic states. It is by definition a
onotonically increasing function of frequency in the ex-

ended Brillouin zone scheme. In PhSC, KL increases by
every time the frequency is increased through an al-

owed band; cf. bold curve in Fig. 2(b). At the frequency in
he middle of the band, cos�KL�=0 because KL=��m

ig. 3. (Color online) Left panel shows dispersion of a PhSC
�K� reduced to the first Brillouin zone. The eigenmodes that cor-
espond to the series of flat bands in the vicinity of the parent
andgap of the single periodic crystal are depicted on the right.
alculations were performed for the structure described in Fig.
.

1/2�. From Eq. (5) one can see that � should be equal to
�m+1/2� at the same frequency. In the finite system, the
ode counting phase �̃ defined [38] as tan��̃�=E� /E coin-

ides with the phase of the transmission coefficient �� �̃.
his explains the monotonic behavior of ����. Equation

5) leads to the fact that quasi-states of the finite system
ccur at the same place as the corresponding band center
f the lattice, irrespective of the definition of the unit cell.
hus, as can also be seen from Fig. 2(b), ���� and K���L

ntersect at ��m+1/2�.
Taylor expansion of the phase around the frequency �0

t the center of a passband, where K���L=��m+1/2�
ives

cos�K���L� = �� − �0�
�− 1�m

�t��0��

d���0�

d�
. �8�

ere, the term that contained d � t��0� � /d� dropped out
ecause cos�K��0�L�=0. Comparing Eqs. (7) and (8) shows
hat it is �t��0��−1d���0� /d� that determines Q=1/� and
ot just �t��0��. Suppressed transmission compensates for
slow phase change [e.g., solid curve in Fig. 2(b) in the

igh-frequency spectral region] and leads to an identical
��� for two different definitions of the unit cell.
We also note that if the segment is chosen such that the

orresponding “cavity” is located in the geometrical center
�t��0� � =1�, the FWHM of the resonance ��� in the trans-
ission coefficient is equal to the width of the passband

n the periodic lattice. This fact follows from Eqs. (5) and
6). It further emphasizes the analogy with CROW struc-
ures that we explored in [30].

We conclude this section by noting that long-range re-
ractive index modulation creates alternating spatial re-
ions that can serve as resonators separated by the tun-
eling barriers. Hybridization of the cavity resonances
reates a series of photonic bands with low dispersion.
he envelope of the eigenstates in these bands Ai

�N� ,Bi
�N�

s a slowly varying function of the coordinate (see Fig. 3).
his effect stems from states proximity to the photonic
and edge of the underlying single-periodic lattice. The
ossibility of a separation into short (a of rapid field oscil-
ations) and long (L of the slow amplitude variation)
ength scales will further inform analytical studies pre-
ented in Sections 5 and 6.

. RESONANT APPROXIMATION
orbidden gaps in the spectra of a periodic system arise
ue to a resonant interaction of the wave with its Bragg-
cattered counterpart [39]. The scattered wave appears
ue to the presence of Fourier harmonics in the spectrum
f the periodic “potential,” which in the case of the Helm-
oltz equation

E��x� +
�2

c2 ���x�E�x� =
�2

c2 �̄E�x�, �9�

s represented by ��2 /c2����x����2 /c2����x�− �̄�. Here we
ave introduced the average value of the dielectric func-
ion �̄=��x�=�0+�� / �2�1+���. When �=0, the condition
� / �̄�1 is sufficient to obtain the position and width of
pectral gaps. Otherwise, an additional condition
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��� / �̄��1 needs to be satisfied instead. We will discuss
he physical meaning of this condition at the end of this
ection.

We begin by noticing that ���x� of our choice [Eq. (2)]
ontains only eight nonzero Fourier harmonics:

��x� = 

m=−�

�

�m exp�i
2�

L
mx� , �10�

here m= �±1, ± �N−1� , ±N , ± �N+1�	. This fact allows for
n exhaustive study of all resonant interactions as fol-
ows. Expressing E�x� in terms of its Fourier components

E�x� = exp�iK���x� 

m=−�

�

Em exp�i
2�

L
mx� , �11�

eads to an infinite system of coupled linear equations

��2

c2 �̄ − �K��� +
2�

L
m�2�Em +

�2

c2 

m��0

�m�Em−m� = 0,

�12�

here K is the Bloch number that varies in the first Bril-
ouin zone �0,� /L�. For the extreme values of K there ex-
sts a spectral range where the term in brackets in Eq.
12) can become simultaneously small for certain values
f m and −m at K=0, and for m and −m−1 at K=� /L. If
�x� contains a harmonic �m� such that it couples these
wo Fourier components, the overall infinite system [Eq.
12)] can be reduced to two resonant equations.

The results of such an analysis are summarized in
able 1 and the corresponding band structure is shown in
ig. 4. Introduction of the long-range modulation in the
ielectric constant results in an expansion of the unit cell
rom a to L=Na and, thus, to a reduction of the Brillouin
one, accompanied by the folding of photonic bands. The
ases of even N=2s and odd N=2s+1 should be distin-
uished. In the former, the primary photonic bandgap
IIe� of the single-periodic lattice reappears at K=0,
hereas in the latter �IIo� it is located at K=� /L. Our
nalysis shows that the nearest frequency gaps, Io,e and
IIo,e, also become resonant (Fig. 4). For the refractive in-
ex modulation of Eq. (2), the normalized width ��N−1� / �̄

Table 1. Results of Resonant Approximation
Analysis of Eq. (12) With Dielectric Function

Given by Eq. (2)a

esonant K
(Even N) � /L 0 � /L
(Odd N) 0 � /L 0

oupled components E−s ,EN−�s+1� Es−N ,Es E−�s+1� ,EN−s

oupling harmonics �−�N−1�, �N−1 �−N, �N �−�N+1�, �N+1

enter frequency, �0 c�

��̄L
�N−1�

c�

��̄L
N

c�

��̄L
�N+1�

ormalized width, �� /�0 ��N−1� / �̄ �N / �̄ ��N+1� / �̄

aThree columns correspond to the three resonant photonic bandgaps that appear
n the spectrum of the dual-periodic PhSC. The expressions hold for both even and
dd N for the choice of parameter s: N=2s and N=2s+1, respectively.
���� /4�̄� / �1+�� of the satellite gaps is smaller than that
f the central gap by a factor of �. By definition, this pa-
ameter is less than unity.

We can see that folding and the onset of the formation
f flat A1

�N�, B1
�N� bands is captured in this approximation.

he criterion of its applicability can be found by consider-
ng the contributions of nonresonant terms in Eq. (12). We
nd that for all three gaps the criteria are qualitatively
he same. Therefore, we present the detailed analysis of
nly one particular resonance, IIIe. The condition that the
losest nonresonant Fourier components E−s−2, E−s, Es−1,
nd Es+1 be smaller than the resonant ones E−s−1 and Es
eads to the relation

�N + 1�2��1 + �N�

4N�̄ + 2�N + 1�2�N−1
� 1. �13�

n the limit of very large N the second term in the de-
ominator becomes dominant and this condition cannot
e satisfied for any value of ��. Thus, N should be finite.
he condition that the first term in the denominator be
ominant is consistent with the entire inequality, Eq.
13), and is equivalent to N�i / �̄�1. Taking the most re-
trictive case for �i we finally obtain

��

8�̄
N � 1, �14�

here we have neglected � for simplicity.

ig. 4. (Color online) Dispersion relation computed with the
ransfer matrix formalism for �0=2.25, ��=0.32, N=9 (dashed
urve), and N=10 (solid curve). The modulation parameter � is
qual to 0.25. For this set of parameters, the applicability condi-
ion [Eq. (13)] of the resonant approximation is satisfied.
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Equation (14) has a clear physical meaning. Indeed,
rom Table 1, it is clear that the frequency of bandgaps I
nd III approach the central gap inherited from the
ingle-periodic system as 1/N. At some point a bandgap of
idth �� /�0=�i / �̄ begins to substantially perturb the
assband of width Kmaxc��0 /N separating consecutive
aps. The resonant approximation breaks when these two
cales become comparable. This condition results in Eq.
14). In other words, the approximation considered in this
ection can at most capture the onset of the flattening
rend in the A1

�N�, B1
�N� bands and fails when N is increased

o the point where these states become abnormally flat,
.e., where �� /Kmax�c / �̄ throughout the band. More so-
histicated approaches are considered in Sections 5 and
.

. EFFECTIVE-MEDIUM APPROXIMATION
ratings written in the core of photosensitive optical fi-
ers are often analyzed with the help of CMT [33]. In both
hallow gratings with long-range modulation in fibers
26,28] and in our PhSC, the forward and backward (lo-
ally) propagating waves continuously scatter into each
ther. The advantage of CMT is that it considers the am-
litudes of the forward and backward waves directly. This
remendously simplifies Maxwell equations. Reference
40] also considered fiber gratings with a deep piecewise
onstant index modulation. In this section we employ the
MT-based method developed by Sipe et al. [26] to obtain

he spectral positions of the flat photonic bands formed in
PhSC.
For shallow modulation, i.e., small ��, our Eq. (2) can

e brought to resemble the model function considered in
26]

n�x�/n0 = 1 + ��x� + 2��x�cos�2k0x + ��x��, �15�

ith the following choice of parameters:

��x� =

���/4

1 + �

�0 +
��/2

1 + �

cos
2�

L
x,

��x� =

��/8

1 + �

�0 +
��/2

1 + �

�1 + � cos
2�

L
x� ,

��x� � 0, n0 = ��0 +
��/2

1 + �
�1/2

, k0 = �/a. �16�

he CMT of [26] is applicable as long as these functions
ave a slow dependence on x, a scale much larger than

0
−1. This condition is indeed satisfied in the PhSC with
�1.
By introducing a small detuning parameter
� =
� − �0

�0
� 1, �0 =

k0c

n0
, �17�

e can, following [26], obtain the governing equation for
he quantity Eeff related to the envelope of the electric
eld

d2Eeff

dx2 + k0
2neff

2 �x,��Eeff = 0. �18�

requency and position dependent effective refractive in-
ex

neff = ����x� + ��2 − ��x�2	1/2, �19�

etermines whether propagation is locally allowed (real
eff) or forbidden (imaginary neff). This is similar to our
efinition of the local PBG diagram, which we studied nu-
erically in Section 3. Figure 5(b) compares CMT’s region

f evanescent propagation (solid curves) to the numerical
alculation (dashed curves). We attribute the relatively
mall discrepancy observed there to the assumption of
hallow modulation made in arriving at Eq. (19).

Equation (18) is formally similar to the Schrödinger
quation. Our analysis in Section 3 shows that the single-
eriod states associated with photonic bands Ai

�N� ,Bi
�N� are

onfined to the region of classically allowed propagation,
n the language of quantum mechanics. By analogy, the

entzel–Kramers–Brillouin (WKB) approximation of
uantum mechanics can be applied [26] to determine the
uantization of energies inside our optical equivalent of a
uantum well

ig. 5. (Color online) (a) Value of the integral in Eq. (20) (solid
urve), as a function of frequency is shown. For easy comparison
ith (b), the plot is transposed so that � is plotted along the y
xis. The circles depict frequencies that satisfy the quantization
ondition of Eq. (20). The dashed lines denote the actual position
f photonic states, as determined by direct numerical analysis of
ection 3. (b) Gray-scale plot of Re�neff�x ,��� given by Eq. (19).
he solid curve shows the boundary of the region where
m�neff�x ,����0. For comparison we also show the local PBG of
ig. 1(b) (dashed curve). In both (a) and (b), the parameters of
ig. 1 are adopted.
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I��� = k0�
xL

xR

neff�x,��dx = �m + 1/2��, �20�

n which xL and xR are, respectively, the left and right
urning points defined by the condition neff�xL,R ,��=0 and

is an integer. The solid curve in Fig. 5(a) depicts the
alue of the integral in Eq. (20), as a function of �, ob-
ained numerically. The filled circles denote the frequen-
ies at which the quantization condition [Eq. (20)] is sat-
sfied. In a system with the parameters we used for
llustration in previous sections, the obtained solutions
re in fair agreement with numerical results obtained
ith the transfer-matrix approach described in Section 3.
his suggests that the index variation given by ��=1,
0=2.25 was sufficiently small for this approach to still be
ualitatively applicable.
We finish the current section by noting that it would be

esirable to retain the attractive property of the CMT en-
elope approach without being constrained by the condi-
ion of small refractive index modulation. The latter may
ot always be justified in the experimental situation of in-
erest [31,32]. In Section 6 we develop such an approach.

. BOGOLYUBOV–MITROPOLSKY
PPROACH

n this section we will consider the standing-wave solu-
ions of Eq. (9). In this case, the corresponding E�x� can be
hosen to be a real function by an appropriate choice of
ormalization. Then, we make the Bogolyubov ansatz
41,42]:

E�x� = A�x�cos�k0x + ��x��,

dE�x�/dx = − k0A�x�sin�k0x + ��x��, �21�

here, as in Section 5, k0=� /a. The above equations de-
ne the amplitude and phase functions. Their substitu-
ion into Eq. (12) gives the so-called Bogolyubov equations
n standard form [41,42]:

d��x�

dx
=

1

k0
��2

c2 ��x� − k0
2�cos2�k0x + ��x��,

dA�x�

dx
=

A�x�

2k0
��2

c2 ��x� − k0
2�sin 2�k0x + ��x��. �22�

o approximations have been made so far. The structure
f the above equation suggests that conditions
A /dx�k0A and d� /dx�k0� can be satisfied in the vi-
inity of the spectral region where �1/k0���2 /c2��x�
k0

2��k0. Here, the overbar denotes an average over one
eriod. Comparison with the analysis in Sections 3–5
hows that this condition is satisfied in the vicinity of the
rimary PBG. In the system of interest, for which N�1,
his observation justifies “averaging out” the fast spectral
omponents, which is the Mitropolsky technique [42].
his averaging procedure leads to the following system of
onlinear equations for the slow-varying amplitude and
hase:
d��x�

dx
=

1

2k0
��2

c2 �0 − k0
2

+
�2

c2

��/2

1 + �
�1 + � cos

2�

L
x��1 +

1

2
cos 2��x��� ,

�23�

d log A�x�

dx
=

1

2k0

�2

c2

��/2

1 + �
�1 + � cos

2�

L
x�sin 2��x�.

�24�

n deriving Eqs. (23) and (24) we have used the explicit
orm of ��x� given by Eq. (2).

We begin the analysis of Eqs. (23) and (24) with a dis-
ussion of the appropriate boundary conditions. In deriv-
ng these equations we have limited consideration to real-
alued solutions of the original Eq. (12), which can be
ound only for a discrete set of frequencies. At these spe-
ial frequencies, the corresponding amplitude function
hould reflect the periodicity of the dielectric function Eq.
2). This implies that

��L� = ��0� + m�, �25�

sin 2��0,L/2,L� = 0. �26�

he first condition is obtained by requiring sin 2��x� in
q. (24) to be periodic. Symmetry of the modulation pro-
le A�x� [see Fig. 1(a)] and continuity of its derivative lead
o the condition dA�x=0,L /2 ,L� /dx=0. This can only be
atisfied by requiring Eq. (26), because other factors on
he right-hand side of Eq. (24) are positive functions.

Equation (23), which determines the evolution of the
hase, is self-contained. Hence, its solution together with
he constraints given by Eqs. (25) and (26) is sufficient to
btain the spectrum of the system and ��x�. The ampli-
ude is to be recovered in the second step by simple inte-
ration of Eq. (24) with the found phase ��x�.

Figure 6 shows the solutions of Eqs. (23)–(26) obtained
y a fourth-order Runge–Kutta numerical method. In ac-
ord with our expectation, for each band there exist two
olutions ��x�, which correspond to standing-wave band-
dge modes at K=0,� /L, as seen in Figs. 6(a) and 6(e).
he corresponding solutions of the amplitude equation,
ig. 6(b)–6(d), 6(f), and 6(g), agree with the envelopes ex-
racted from direct solutions of the Helmholtz equation
Fig. 3). The eigenvalues of Eq. (23) also give the frequen-
ies that correspond to band-edge states, and are also in
xcellent agreement (the observed deviation is less than
.1%); see Fig. 3. Knowledge of the band-edge frequencies
llows the determination of all parameters of the tight-
inding approximation for ��K� [Eq. (1)]. Therefore, the
ntire band structure in the spectral region of each of the
at bands can be obtained solely from solution of the
mplitude-phase equation.
The filled circles in Figs. 6(a) and 6(e) denote the spa-

ial position where the particular ��x� is equal to m� /2.
t these special points dA�x� /dx=0, as denoted by the
ertical dashed lines in Figs. 6(b)–6(d), 6(f), and 6(g).
hus, the overall phase accumulated by ��x� over one pe-
iod is an important parameter indicative of the spatial
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tructure of the amplitude. At the band-edge frequencies
f the bands A1

�N� and B1
�N� (see Section 3 for notations),

he phase is a bounded function ���x�−��0� � �� /2. There-
ore, x=0,L /2 ,L are the only positions where the corre-
ponding amplitude function takes the minimum–
aximum values. Thus, as seen in Figs. 6(b) and 6(f) A�x�

as only one “hump” for A1
�N� and B1

�N�. A comparison of
�x� computed at the K=0 (solid curves) and K=� /L

dashed lines) edges of each photonic band shows (Fig. 6)
hat the difference occurs in the spatial regions where
lectromagnetic waves propagate via the “tunneling
echanism” in the language of the CROWs of Section 3.

n these regions A�x� is small, which explains the small
pectral width of the corresponding photonic bands.

As the eigenfrequencies of the higher-order states

2
�N� ,B2

�N� , . . . shift further away from the primary band-
ap region [Fig. 1(b)], ��x� becomes a progressively
teeper function, leading to a steady increase in the num-
er of humps in A�x� [Fig. 6]. This progression accelerates
he spatial dependence of the amplitude and leads to an
ventual breakdown of the scale separation approxima-
ion used in the derivation of Eqs. (23) and (24). Never-
heless, such a loss of applicability occurs well outside the
pectral region of interest, demonstrating the robustness
f the approach developed here.

ig. 6. (Color online) Numerical solutions of Eqs. (23)–(26) are
here the particular ��x� is equal to m� /2. At these special point

g). Ai
�N� and Bi

�N� denote the low-dispersion photonic bands as de
. SUMMARY
n this work we have studied the optical properties of a
ual-periodic photonic superlattice with four different
heoretical methods. Although each method has its limi-
ations, the results obtained in the framework of each
odel complement each other.
Numerical simulation with transfer matrices provides
direct approach for calculating the photonic band struc-

ure. This method, however, provides little physical in-
ight into the nature of the photonic bands. In Section 3
e compared the spectrum of the infinite (periodic) crys-

al with the transmission spectrum of a finite system with
length equal to one period of the superstructure. We

dentified the individual transmission resonances with
he photonic bands and found a one-to-one correspon-
ence. Furthermore, the spatial distribution of the fields
t resonance demonstrated that in the L�a limit the en-
elope (amplitude) of the state changes slowly—on the
cale of L.

With a method commonly employed in condensed mat-
er physics we investigated the resonant interactions be-
ween Bloch waves when the second, longer-scale, modu-
ation is introduced. We showed that the flattening of
hotonic bands is related to, but goes beyond band fold-
ng. It arises due to increased coupling between Bloch

. Filled circles in panels (a) and (e) denote the spatial position
� /dx=0 is denoted by the vertical dashed lines in (b)–(d), (f), and
n Section 3.
shown
s dA�x
fined i
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aves with k vectors at the boundaries of the Brillouin
one. The subsequent increase of the bandgap regions
squeezes” the bands making them progressively flatter
s N=L /a is increased. Although, as shown in Section 4,
his approach fails for very large N, it still provides in-
ight into the origin of the anomalously small dispersion
n the spectra of PhSCs.

Diffraction gratings introduced in optical fibers are of-
en spatially modulated. Coupled-mode theory has been
eveloped to reduce the problem to a study of the ampli-
udes of the forward and backward propagating waves
nd to avoid a direct solution of Maxwell’s equations. Al-
hough the refractive index contrast induced in optical fi-
ers is orders of magnitude smaller then in the systems
e are concerned with in this work, the CMT-based ap-
roach of Section 5 provided a clear physical picture. It
howed that the electromagnetic states of our optical
esonators can be thought of as eigenstates of the photo-
ic wells. This further reinforced the analogy with
ROWs that we developed in Section 3.
We proceeded by noting a formal similarity between the

elmholtz equation with the considered dielectric func-
ion and the equation describing parametric resonance in
scillation theory. Adopting an amplitude-phase formal-
sm, accompanied by a separation of scales (short a and
ong L=Na) allowed us to derive a tractable set of equa-
ions for the envelope functions. This enabled us to study
hysically meaningful mode profiles directly, without as-
uming small modulations of the refractive index.

We find that the dual-periodic photonic lattice is a
romising system for studying slow-light phenomena. It
an be viewed as an array of evanescently coupled optical
avities. The cavities are formed due to the presence of a
econd, long-range modulation, which creates alternating
patial regions of allowed and forbidden propagation.
hus, analogies with multiple-quantum-well and coupled
esonant optical arrays (CROWs) are appropriate. Unlike
ther CROW implementations, the structures studied can
e produced with a holography-based approach, which en-
bles fabrication of arrays with a large number of identi-
al resonators. The latter is a crucial condition from an
xperimental point of view, and should ensure that the
esonances of the individual cavities couple to form flat
hotonic bands.
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