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We demonstrate that a photonic lattice with short- and long-range harmonic modulations of the refractive
index facilitates formation of flat photonic bands and leads to slow propagation of light. The system can be
considered a coupled-resonator optical waveguide (CROW): photonic bands with abnormally small disper-
sion are created due to the interaction of long-lived states in the cavity regions via weak coupling across
tunneling barriers. Unlike previous CROW implementations, the proposed structures can be fabricated with
interference photolithography (holography), sidestepping the issue of resonator-to-resonator fluctuation of
the system parameters. The proposed holography-based approach enables fabrication of arrays with a large
number of coupled optical resonators, which is necessary for practical applications. © 2007 Optical Society of
America
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Photonic crystal (PhC) structures1 have been recog-
nized as a versatile testbed for achieving unparal-
leled control over light propagation, including slow-
ing down or stopping light completely, that can be
used in, e.g., optical memories, delay lines, and to en-
hance nonlinear interactions. Among the solid-state
approaches to slowing down light,2 periodic arrays of
weakly coupled resonators show great promise.3 Such
an array,4 dubbed a coupled-resonator optical
waveguide5,6 (CROW), is essentially a one-
dimensional (1D) PhC with a carefully engineered
photonic band structure. Hybridization of the high-Q
resonances of the individual cavities leads5,6 to a low-
dispersion photonic band:

��K� = ��1 + � cos�Ka��. �1�

The propagation speed of a light pulse at frequencies
within the band can be considerably reduced �vg
=d� /dK�c� when the coupling between the resona-
tors is weak (small �). Efficient second-harmonic
generation7 and high-power low-threshold lasers8 are
among the possible applications of CROW devices. To
make a CROW practical, it needs to contain a large
number of the individual resonators. However, hy-
bridization of high-Q resonances of the individual
resonators is possible only when the latter are nearly
identical. This requirement puts severe constraints
on the fabrication error margin and the resonator-to-
resonator parameter fluctuation tolerance. Difficulty
in satisfying these strict criteria has hampered wide-
spread applications of CROW devices.3

Here we demonstrate that this limitation can be
sidestepped in 1D PhC that possesses a long-range
�aL� harmonic modulation of the refractive index (see
Fig. 1):

n2�x� = ��x� = �0 + ���� cos�k1x� + � cos�k2x��2, �2�

where k1−k2��k, �k1+k2� /2�k, and �+�=1. k and
�k are related to the short- and long-range modula-
tions of the refractive index: aS=2	 /�k and aL=	 /k,

respectively.
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Flat bands related to the periodically placed struc-
tural defects (resonators) in 1D PhCs have been
observed9–12 and considered for CROW appli-
cations.13,14 However, the structures proposed before
need to be constructed with the layer-by-layer tech-
nique, which is susceptible to fabrication errors, as
are the other CROWs discussed above. We propose to
use optical holography to create dual-harmonic
modulations of the refractive index as in Eq. (2). Ho-
lography is a mature technique that can be used in
conjunction with, e.g., quantum dot lithography15 to
define a dual-periodic PhC CROW with a large num-
ber of virtually identical resonators. Furthermore, we
demonstrate that our approach allows easy control of
the optical properties of the CROW.

Let us consider four s-polarized laser beams de-
fined by

�
qL1,EL1

qL2,EL2

qR1,ER1

qR2,ER2

� = �
k0�− sin�
1�,0,cos�
1�	,E1

k0�− sin�
2�,0,cos�
2�	,E2

k0�sin�
1�,0,cos�
1�	,E1

k0�sin�
2�,0,cos�
2�	,E2

� . �3�

Here q and E are the k-vector and amplitude of the
beams, respectively. Their interference pattern,
Etot�x��� cos�k1x�+� cos�k2x�, leads to Eq. (2). The
parameters in Eqs. (2) and (3) are related as �
=E1 / �E1+E2�, �=E2 / �E1+E2� and k1=k0 sin 
1, k2
=k0 sin 
2. Manipulation of the beams allows for easy
control over the structural properties of the resultant
PhC: (i) fundamental periodicity aS via k0 and 
1,2;
(ii) long-range modulation aL via 
1−
2; (iii) depth of
the long-range modulation via the relative intensity
of the beams, E1 /E2.

Now we show that the proposed long-range refrac-
tive index modulation creates alternating spatial re-
gions that can serve as resonators separated by tun-
neling barriers. The condition of weak coupling �
�1 between the states of the neighboring resonators
requires sufficiently large barriers and therefore aS

�aL, which we assume hereafter.
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In a regular �aL→�� 1D PhC, the eigenfunctions of
the crystal satisfy the Bloch theorem:

E��,x� = e��,x� 
 exp�iK���x�, �4�

where e�� ,x� is periodic on the aS scale and the
eigenfrequency � enters as a parameter. The propa-
gation of electromagnetic waves over one period in
the 1D PhC can be described by a 2
2 transfer
matrix16–18 T̂tot=�x

x+aST̂�� ,�+d��, which is related to
the propagation constant K��� as cos�K���aS�
=Tr�T̂tot� /2. In the spectral regions of a photonic
bandgap (PBG), K��� becomes complex and wave
propagation is possible only via a tunneling mecha-
nism in a PhC of finite length.

In PhCs with long-range modulation, the Bloch
theorem Eq. (4) cannot be applied locally on the aS
scale, because now the propagation constant becomes
a function of position Kloc�� ,x�. The forward-
propagating (locally) wave exp�iKloc�� ,x�x� scatters
into exp�−iKloc�� ,x�x�, which can be described with
the coupled mode approach.17,19

The shaded area in Fig. 1(a) shows the spectral re-
gion where Kloc becomes complex. This modulation of

Fig. 1. (a) Photonic bandgap diagram (local PBG) of the du
in (b). We used �0=2.25, ��=0.99, N=80, and asymmetry p
foremost photonic bands on the long- and short-wavelength
A� to B� when N→�. (c) Calculated photonic band structur
Eq. (1) dispersion (d). Plot (e) of the group velocity for the se
tonic decrease (notice the logarithmic scale) toward the ga
decrease of the local group velocity inside the resonator re
resonators. (f) Group velocity in the AN band shown in (d); t
the band-edge frequency within the band AN.
the PBG as a function of the spatial coordinate [com-
pare with Fig. 1(b) for guidance] allows the electro-
magnetic wave to propagate with real or imaginary
Kloc in different parts of the same PhC. As shown in
Fig. 1, there exist photonic bands such as AN or BN
that correspond to the CROW picture: within these
bands an EM wave propagates via a tunneling
mechanism between the resonator regions. In the
case of AN �BN� regions around xm=NaS /2+NaS
m
�xm=NaS
m� represent the periodically placed reso-
nators separated by the confining buffers. Here, m is
an integer.

For rigorous calculation of the photonic band struc-
ture of the dual-periodic system, the transfer matrix
over a period is required. An interesting situation
may arise when aL /aS is noninteger. The spectrum of
such a structure exhibits a “butterfly” structure,11

similar to the spectrum of an electron in a solid with
an applied magnetic field.20 We, however, will limit
our consideration to a special class of commensurate
lattices where aL /aS=N. In this case aL is a period of
the crystal and the spectrum determined by
cos�K���aL�=Tr��x

x+aLT̂�� ,�+d��� /2.
Figures 1(c)–1(f) show the calculated band struc-

ture in the dual-periodic 1D PhC with N=80. A series

riodic photonic crystal lattice defined by Eq. (1) and shown
meter E1 /E2=7.5. AN and BN mark the frequencies of the
es, respectively, of the compound PBG, which extends from

=80�. The AN band shows typical cosine dependence as in
of bands approaching the compound PBG shows the mono-
s discussed in the text, we attribute this trend to (i) the
s and (ii) the decrease in tunneling coupling between the
set shows the distribution of intensity (over one period) for
al-pe
ara
sid
e �N
ries
p. A
gion
he in
of progressively flatter bands develops on each side of
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the PBG region. We offer a clear physical explanation
of this effect. For concreteness we will describe the
lower-frequency sequence of bands. At frequencies
below A� propagation of EM waves is allowed in the
vicinity of xm=NaS /2+NaS
m, leading to the forma-
tion of a series of photonic band-edge modes. These
modes [see the inset of Fig. 1(f) for the field distribu-
tion within the AN band] hybridize and form photonic
bands as in the other CROW implementations.3 K���
can also be related to the transmission coefficient
through the single period of the structure18

cos�K���aL�=Re�t����. For a state with a sufficiently
high Q, t��� is described by a Lorentzian,
�−1�N�� /2� / �i�� /2�− ��−���. Substitution of this ex-
pression into the above equation leads directly to Eq.
(1) with

� = �/2� � 1/Q. �5�

Thus, the decrease of group velocity in the PhC is di-
rectly related to the increase of the cavities’ Q-factor.
Similar to what occurs with the other CROWs, this
effect also leads to the reduction of the useful band-
width, as reviewed in Ref. 3.

In a finite single-periodic PhC, the Q-factor of the
band-edge mode depends on the system size. In our
case aL gives the characteristic length, which also de-
termines the frequency of the last (closest to the
band-edge) mode, AN. As N increases, AN shifts to-
ward A� because the size of each resonator region in-
creases [see also the inset of Fig. 1(f)]. The decrease
of the local group velocity vg�x�= �dKloc�� ,x� /d��−1

around xm=NaS /2+NaS
m contributes to the in-
crease of the Q-factor of the resonators.

The other factor that affects confinement is the
tunneling rate between consecutive cavities. This can
be controlled in the considered dual-periodic PhC by
�� and/or by the depth of the long-range modulation
set by � (or �), Eq. (2). If the former may not be ad-
justable for the given experimental conditions, the
latter is easily controlled by changing the relative in-
tensity of the pairs of lithographic beams, E1 /E2. One
may expect that 100% modulation [�=�=1/2 in Eq.
(2)] should lead to the photonic bands with the small-
est dispersion (smallest group velocity). In this case,
however, the resonators located at xm=NaS /2+NaS

m would consist of the spatial regions with an al-
most constant refractive index and thus vg�x�
c.
Furthermore, complete modulation would also nega-
tively affect (increase) the coupling between the reso-
nators. This can also be seen from PBG diagram in
Fig. 1(a): points A� and C would coincide as a result
of the �=�=1/2 condition. Therefore, the frequency
of the AN state would fall into the region where there
is no PBG at xm=NaS
m positions. Indeed, our pho-
tonic band structure calculations demonstrate that
structures with 100% modulation are less advanta-
geous and lead to significantly larger propagation
speeds. The optimum value of � depends on the ex-
perimental parameters (�0, ��, and N) and should be

determined with the help of a PBG diagram similar
to Fig. 1(a). The diagram also proves useful in ex-
plaining the advantage of AN over BN. In the latter
case, the tunneling barriers are thinner and their lo-
calization length is longer (PBG is spectrally nar-
rower at xm=NaS /2+NaS
m than it is at xm=NaS

m).

In summary, there are numerous applications that
can take advantage of slow-propagating light: optical
memories, low-threshold lasers, nonlinear devices,
and delay lines. Experimental realizations of CROW
slow-light devices, suffer from low structural-error
tolerances. Unlike previously known resonators, the
proposed photonic crystal lattice with dual-harmonic
modulations of the refractive index defined by Eq. (2)
can be implemented by interference lithography of
four plane-wave beams, ensuring that all resonators
and tunneling barriers are the same. This approach
paves the way to inexpensive slow-light applications.
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port from University of Missouri–Rolla.
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