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We have developed a numerical method based on the transfer matrix to calculate the quasi modes and lasing
modes in one-dimensional random systems. Depending on the relative magnitude of the localization length
versus the system size, there are two regimes in which the quasi modes are distinct in spatial profile and fre-
quency distribution. In the presence of uniform gain, the lasing modes have one-to-one correspondence to the
quasi modes in both regimes. Local excitation may enhance the weight of a mode within the gain region due to
local amplification, especially in a weakly scattering system. © 2007 Optical Society of America
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1. INTRODUCTION

The random laser, in which optical feedback is provided
by scattering of light due to spatial inhomogeneity of the
medium rather than by well-defined mirrors, has recently
attracted much attention [1]. One important topic of re-
search is the nature of random laser modes. For a random
laser with nonresonant feedback, the lasing modes are
the diffusive modes, i.e, the eigenmodes of the diffusion
equation [2]. For a random laser with resonant feedback,
the lasing modes are believed to be the quasi modes, i.e,
the eigenmodes of the Maxwell equations [3]. This belief
implies the quasi modes of a passive random system are
not modified by the presence of gain. Such an assumption
is confirmed by the numerical studies of lasing modes in
the localization regime [4,5]. With the introduction of
gain, the localized modes of a passive random system are
preserved and serve as the lasing modes. This conclusion
is extended to the random systems far from the localiza-
tion regime without direct confirmation. The lasing modes
are regarded as the quasi modes with a small decay rate,
in particular, the anomalously localized states [6,7]. How-
ever, a recent theoretical study [8] reveals that the quasi
modes of a passive random system are not the genuine
normal modes of the same system with gain. This is be-
cause the spatial inhomogeneity of the dielectric constant
introduces a linear coupling between the quasi modes,
mediated by the polarization of the active medium. The
latest development of semiclassical laser theory for open
complex or random media leads to the speculation that
the lasing mode in a weakly scattering system may be a
composite of many quasi modes with a low-quality factor
[9,10]. Moreover, under local excitation the reabsorption
outside the local gain region suppresses the feedback
from the unpumped part of the random sample and effec-
tively reduces the system size [11]. The lasing modes are
therefore completely different from the quasi modes and
confined in the vicinity of the pumped region. All these
studies prompt us to investigate carefully the relation be-
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tween the lasing modes and the quasi modes in both glo-
bal pumping and local pumping. In this paper, we address
the question whether the lasing modes are the quasi
modes of passive random systems. The answer to this
question determines whether the statistical distribution
of the decay rates of quasi modes can be used to predict
the lasing threshold and the number of lasing modes for
the random laser [12-19].

We conduct detailed numerical studies of quasi modes
and lasing modes in one-dimensional (1D) random sys-
tems. A numerical method based on the transfer matrix is
developed to calculate the quasi modes as well as the las-
ing modes in the presence of global or local gain. The
main advantage of this method as compared with the
finite-difference time-domain method is that it can calcu-
late the quasi modes of weakly scattering systems that
overlap spectrally and have short lifetimes. In our nu-
merical simulation, the scattering strength is varied over
a wide range. The quasi modes, as well as the lasing
modes, are formed by distributed feedback in the random
system. The conventional distributed feedback laser,
made of periodic structures, operates in either the over-
coupling regime or the undercoupling regime [20]. The
random laser, which can be considered a randomly dis-
tributed feedback laser, also has these two regimes of op-
eration. In the undercoupling regime the system size L is
much less than the localization length ¢, whereas in the
overcoupling regime L> ¢ The dominant mechanism for
the mode formation differs in these two regimes, leading
to distinct characteristics of mode profile and frequency
distribution. With the introduction of uniform gain, the
lasing modes have one-to-one correspondence to the quasi
modes in both regimes. However, local pumping can make
the lasing modes significantly different from the quasi
modes, especially in the undercoupling systems. Some
quasi modes even fail to lase, no matter how high the
pumping level is. The results we obtain help in under-
standing the random lasing with resonant feedback in the
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weakly scattering systems [21], especially the recent ob-
servations of periodic lasing peaks in frequency [22,23].

2. NUMERICAL METHOD

We have developed a numerical method based on the
transfer matrix to compute the quasi modes of 1D passive
systems. This time-independent method is also applied to
the calculation of lasing modes at the threshold under glo-
bal or local excitation. The random system is a 1D layered
structure. It is composed of N dielectric layers with air
gaps in between. The refractive index of the dielectric lay-
ers is ng, and that of the air gaps is 1. Both the thickness
d of the dielectric layers and the thickness of air gaps dy

are randomized. d1’2=31’2(1+01;), where 0<o<1 repre-
sents the degree of randomness, 7 is a random number in

[-1,1], and d; (ds) is the average thickness of the dielec-
tric layers (air gaps). Outside the random system the re-
fractive index is constant, and its value is equal to the av-
erage refractive index n.,; of the random system to
eliminate the boundary reflection.

According to the transfer-matrix formula:

(Pl) =M<P0>’ (1)
q1 90

where py and q( represent the forward- and backward-
propagating waves on one side of the random system, p;
and q; represent those on the other side, and M is a 2
X 2 transfer matrix that characterizes wave propagation
through the random system. The eigenmode of such an
open system can be defined as a natural mode or quasi
mode, which generalizes the concept of an eigenmode of a
closed system [24]. It satisfies the boundary condition
that there are no incoming waves but only outgoing waves
through the boundary of a random system, namely, pg
=0 and ¢;=0. In a passive system (without gain or ab-
sorption, the refractive indices being real numbers), such
boundary condition requires the vacuum wave vector to
be a complex number, ky=Fkg,.+ikg;. Substituting the
boundary condition into Eq. (1), we get M95=0. Since My,
is a complex number, both the real part and the imagi-
nary part of My, are equal to 0. These two equations are
solved to find %, and k. k.= w/c tells the frequency w of
a quasi mode, and kg;=-vy/c gives the decay rate y of a
quasi mode.

After finding % of a quasi mode, one can obtain the cor-
responding wave function by calculating the electric field
distribution E(x) throughout the random system with the
transfer matrix M(k;). The wave function inside the ran-
dom system can be written as E(x)=E,(x)e"®ko
+E_(x)e @kt wwhere n(x) is the (real part of) refractive
index at position x, E, (x)e®*0* represents the forward-
propagating field, and E_(x)e ® 0 represents the
backward-propagating field. Since &, is a complex num-
ber, the amplitudes of forward- and backward-
propagating fields are E, (x)e "Wk and E_(x)e ko (k,
<0). These expressions show that there are two factors
determining the wave function. The first is E,(x), which
originates from the interference of multiply scattered
waves. The second is e**®*0i* which leads to exponential
growth of the wave function toward the system boundary.
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Outside the random system, the wave function grows ex-
ponentially to infinity due to the negative kq;,. This is
clearly unphysical. Thus we disregard the wave function
outside the random system and normalize the wave func-
tion within the random system to unity.

We introduce optical gain into the random system by
adding an imaginary part n; (negative number) to the re-
fractive index, whose value at the lasing threshold is to be
determined later. In the case of uniform gain, n; is con-
stant everywhere inside the system. Outside the random
system, n; is set to zero. Different from the quasi mode of
a passive system, the vacuum wave vector % of a lasing
mode is a real number. The wave vector inside the ran-
dom system is a complex number, k=Fk,+ik;=Fky[n(x)
+in;]. Its imaginary part k;=kgn; is inversely proportional
to the gain length /,. The onset of lasing oscillation corre-
sponds to the condition that there be only outgoing waves
through the boundary of the random system. The absence
of incoming waves requires Mo,=0 in Eq. (1). Again, since
M5 is a complex number, both its real part and its imagi-
nary part are zero. These two equations are solved to find
ko and n;. Each set of solution (ky,n;) represents a lasing
mode. ky=w/c sets the lasing frequency w, and n;ky=*k;
=1/l, gives the gain length /, at the lasing threshold. We
then obtain the spatial profile of the lasing mode by cal-
culating the field distribution throughout the random sys-
tem with the transfer matrix M(k,n;). Since our method
is based on the time-independent wave equation, it holds
only up to the lasing threshold [25]. In the absence of gain
saturation, the amplitude of a lasing mode would grow in
time without bound. Thus we can only get the spatially
normalized profile of a lasing mode at the threshold. The
lasing mode is normalized in the same way as the quasi
mode for comparison. The amplitudes of forward- and
backward-propagating fields of a lasing mode are
E,(x)e %k and E_(x)e"*®* (n;<0). The exponential
growth factors e*"#*0* depend on the gain value |n;k|.

Local pumping is commonly used in the random laser
experiment. To simulate such a situation, we introduce
gain into a local region of the random system. Our method
can be used to find the lasing modes with arbitrary spa-
tial distribution of gain. The imaginary part of the refrac-
tive index n;(x)=n;f(x), where f(x) describes the spatial
profile of gain and its maximum is set to 1 and 7; repre-
sents the gain magnitude. The lasing modes can be found
in a way similar to the case of uniform gain. The solution
to M99=0 gives the lasing frequency ., and threshold gain
n;ko. The normalized spatial profile of a lasing mode is
then computed with M(kq,7;).

3. RESULTS AND DISCUSSION

Using the method described in the previous section, we
calculate the quasi modes of 1D random systems. The
quasi modes are formed by distributed feedback from the
randomly positioned dielectric layers. We investigate
many random structures with different scattering
strengths. Depending on the relative values of the local-
ization length ¢ and the system length L, there are two
distinct regimes in which the quasi modes are dramati-
cally different: (i) overcoupling regime L>¢ and (ii) un-
dercoupling regime L <¢.
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As an example, we consider the random structure with

d1=100 nm and dy=200 nm. ¢=0.9 for both d; and ds. To
change from the undercoupling regime to the overcou-
pling regime, we increase the refractive index n, of the di-
electric layers. In particular, we take ny;=1.05 and 2.0.
The larger n, leads to stronger scattering and shorter lo-
calization length & To obtain the value of & we calculate
the transmission T as a function of system length L. (In T
is obtained from averaging over 10,000 configurations
with the same L and o. When L> ¢, (In T(L)) decays lin-
early with L, and & 1=-d{n T(L))/dL. In the wavelength
(\) range of 500 to 750 nm, ¢ exhibits slight variation
with N due to the residual photonic bandgap effect. For
ng=1.05, £€~200-240 um, whereas, for ny=2.0, {~1.2
—1.5 um. In the calculation of quasi modes, we fix the
number of dielectric layers N=81 and (L)=24.1 um. For
n=1.05, &L in the wavelength range of interest; thus
the random system is in the undercoupling regime. In
contrast, for n=2.0, (£<L, and the system is in the over-
coupling regime.

To illustrate the difference between the overcoupling
regime and the undercoupling regime, we compare the
quasi modes of the same random structure with different
ng, namely, ny=2.0 or 1.05. Figures 1(a) and 1(b) are the
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typical transmission spectra of these two systems. For the
system with n,=2.0, most transmission peaks are narrow
and well separated in frequency, whereas for n;=1.05, the
transmission peaks are typically broad and overlapped.
We find ky=Fk(,+ik(; of the quasi modes in the wavelength
range of 500—750 nm. Figure 1(c) shows the values of %,
and kg;/(kq;) of these modes; ((k;) is the average over all
the quasi modes in the wavelength range of 500—750 nm).
In the system with n;=2.0, most quasi modes are well
separated spectrally, and they match the transmission
peaks. kg, corresponds to the frequency of a transmission
peak, and k; corresponds to the linewidth of a transmis-
sion peak. However, some quasi modes are located close to
the system boundary, thus having relatively large k;.
They are usually invisible in the transmission spectrum
owing to spectral overlap with neighboring transmission
peaks, which causes the number of transmission peaks
[Fig. 1(a)] to be slightly less than the number of quasi
modes [solid squares in Fig. 1(c)]. In the system with n,
=1.05, however, the number of peaks or maxima in the
transmission spectrum [Fig. 1(b)] is significantly less
than the number of quasi modes [open circles in Fig. 1(c)].
This is because in the undercoupling regime the decay
rates of the quasi modes often exceed the frequency spac-
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(Color online) (a), (b): Transmission 7" through a 1D random structure with n;=2.0,1.05 as a function of vacuum wave vector k.

(c) Frequencies k, and normalized decay rates k;/(k(;) of the quasi modes in the random systems with n;=2.0 (solid squares) and n,
=1.05 (open circles), compared with the frequencies &, and normalized threshold gain %;/(k;) of lasing modes in the same systems with
ny=2.0 (plus signs) and ny=1.05 (crosses) under uniform excitation. (d) Normalized frequency spacing Ak,./(Ak,) of neighboring quasi
modes in the random systems with n;=2.0 (solid squares) and n;=1.05 (open circles), compared with the normalized frequency spacing
Aky/(Aky) of neighboring lasing modes in the same systems with n;=2.0 (plus signs) and n;=1.05 (crosses) under uniform excitation.
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ing to neighboring modes. The spectral overlap of the
quasi modes makes the transmission peaks less evident
and some even buried by the neighboring ones.

It is clear in Fig. 1(c) that the decay rate fluctuation is
much stronger in the random system with n;=2.0 (solid
squares) than that with n;=1.05 (open circles). This is
consistent with the broadening of quasi-mode decay rate
distribution as a system approaches the localization re-
gime with increasing scattering strength. Figure 1(d)
plots the frequency spacing Ak, between adjacent quasi
modes normalized to the average value (Ak,). The quasi
modes of the random system with n;=1.05 are more regu-
larly spaced in frequency than those in the system with
ng=2.0. The average mode spacing is inversely propor-
tional to the system length L.

To interpret this phenomenon, we investigate the wave
functions of the quasi modes. Figure 2(a) [Fig. 2(b)] shows
the spatial distribution of intensity I(x)=|E(x)|? for a typi-
cal quasi mode of the random system with n,;=2.0 (ny
=1.05). I(x) is normalized such that the spatial integra-
tion of I(x) within the random system is equal to unity.
The expression of E(x) given in the previous section re-
veals the two factors determining the envelope of the
wave function, i.e., the interference term E*(x) and the
exponential growth term e*"®*0*, Depending on which
term is dominant, the spatial profile of the quasi modes
can be drastically different. In the overcoupling regime,
strong scattering makes the interference term dominant,
and I(x) exhibits strong spatial modulation. Most quasi
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Fig. 2. (Color online) Spatial intensity distributions of quasi
modes (black solid curve) and the corresponding lasing modes in
the presence of global gain (red dashed curve) or local gain (blue
dotted curve). The pumped region is between the two vertical
lines, L,=11.87 um. (a) For the mode marked A in Fig. 1(a), A
=646 nm, ny;=2.0. (b) For the mode marked B in Fig. 1(b), A
=549 nm, ny=1.05.
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modes are localized inside the random system, similar to
the mode in Fig. 2(a). Their decay rates are low as a result
of the interference-induced localization. In the undercou-
pling regime, the interference effect is weak owing to the
small amount of scattering. The exponential growth term
e*"@ko dominates E(x), making I(x) increase exponen-
tially toward the boundaries. The interference term
causes only weak and irregular intensity modulation. A
typical example of such mode profile is exhibited in Fig.
2(b). Since the quasi modes in the undercoupling system
are spatially extended across the entire random system,
the rates of light leakage through the boundaries are
much higher than those of the localized modes in the
overcoupling system.

We repeat the above calculations with many random
systems and find the two different types of quasi mode are
rather typical for the systems in the overcoupling and un-
dercoupling regimes. The mode profiles and frequency
spacings in the undercoupling systems reveal that the
feedbacks from the dielectric layers close to the bound-
aries are dominant over those from the interior. Thus the
quasi modes in the undercoupling systems are formed
mainly by the feedbacks from the scatterers near the sys-
tem boundaries. However, the feedbacks from the scatter-
ers in the interior of the system are weak but not negli-
gible; e.g., they induce small fluctuations in the frequency
spacings and the decay rates. Note that a random system
in the undercoupling regime cannot be approximated as a
uniform slab with the average refractive index n.4, even
though its quasi modes exhibit features similar to the
Fabry—Perot modes formed by the reflections from the
slab boundaries. Since in our calculation the refractive in-
dex outside the random system is set to n.4, there would
be no quasi modes if the random system were replaced by
a dielectric slab of .4 Hence, the quasi modes in the un-
dercoupling regime are not formed by the boundary re-
flection. In the overcoupling regime, the feedback from
the scatterers deep inside the system becomes dominant,
and the interference of multiply scattered waves leads to
spatial localization of the quasi modes.

Next, we study the lasing modes in the random system
with uniform gain and compare them with the quasi
modes. n; is constant everywhere within the random sys-
tem, so that the gain length /,=1/k;=1/k¢n; in the dielec-
tric layers is equal to that in the air gaps. Using the
method described in the previous section, we find the fre-
quency and threshold gain of each lasing mode. We calcu-
late the lasing modes in the same random systems as in
Fig. 1 within the same wavelength range (500—750 nm).
The frequency %, and normalized threshold %;/(k;) of each
lasing mode are plotted in Fig. 1(c) for comparison with
the quasi modes. It is clear that there exists one-to-one
correspondence between the lasing modes and the quasi
modes for the random systems in both overcoupling and
undercoupling regimes. For the system with n;=2.0, the
lasing modes match well the quasi modes, with only a
slight difference between k;/{(k;) and k;/{k;) for the rela-
tively leaky modes. For the system with n;=1.05, the de-
viation of the lasing modes from the quasi modes is more
evident, especially for those modes with large decay rates.
Such deviation can be explained by the modification of
transfer matrix M. In the passive system, k; is constant,
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but k;=kyn(x) varies spatially. With the introduction of
uniform gain, k; becomes constant within the random sys-
tem, and the feedback inside the random system is caused
only by the contrast in the real part of the wave vector
k,.=kon(x) between the dielectric layers and the air gaps.
With a decrease in the scattering strength, %(; in the pas-
sive system gets larger, and the ratio of the feedback
caused by the contrast in k; to that in %, increases. The
addition of uniform gain results in a bigger change of M,
as it removes the feedback due to the inhomogeneity of %;.
Moreover, since there is no gain outside the random sys-
tem, k; suddenly drops to zero at the system boundary.
This discontinuity of k; generates additional feedback for
the lasing modes. In the weakly scattering system, the
threshold gain is high. The larger drop of &; at the system
boundary makes the additional feedback stronger. To
check its contribution to lasing, we replace the random
system with a uniform slab of n.; while keeping the same
gain profile. Since the real part of the refractive index or
k, is homogeneous throughout the entire space, the feed-
back comes only from the discontinuity of k; at the slab
boundaries. We find the lasing threshold in the uniform
slab is significantly higher than that in the random sys-
tem with n;=1.05. This result confirms that, for the ran-
dom systems in Fig. 1, the additional feedback caused by
the k; discontinuity at the system boundary is weaker
than the feedback due to the inhomogeneity of %, inside
the random system. However, if we further reduce n, or
L, the threshold gain increases, and the feedback from the
system boundary due to gain discontinuity eventually
plays a dominant role in the formation of lasing modes.

We also compute the intensity distribution I(x) of each
lasing mode at the threshold. I(x) is normalized such that
its integration across the random system is equal to 1.
Such normalization facilitates the comparison of the las-
ing mode profile with the quasi-mode profile. In Fig. 2(a)
[Fig. 2(b)], I(x) of the lasing mode is plotted together with
that of the corresponding quasi mode. Although the lasing
mode profiles in Figs. 2(a) and 2(b) are quite different,
they are nearly identical to those of the quasi modes. For
the localized mode in the random system with n;=2.0,
I(x) of the lasing mode does not exhibit any visible differ-
ence from that of the quasi mode in Fig. 2(a). For the ex-
tended mode in the system with n;=1.05, the lasing mode
profile deviates slightly from the quasi-mode profile, espe-
cially near the system boundaries. This deviation results
from the modification of the transfer matrix M by the in-
troduction of uniform gain across the random system. The
modification is bigger in the undercoupling system, lead-
ing to a larger difference in the mode profile.

Finally, we investigate the lasing modes under local
excitation. In particular, f(x)=1 for |x-x.|<L{/2, flx)
=exp[—|jx—x.|/Ly] for Li/2<l|x-x.<L{/2+2Ly, and f(x)
=0 elsewhere. The lasing mode frequency %, the thresh-
old gain k;=Fk71;, and the spatial profile I(x) are calculated
with the method described in the previous section. I(x) is
normalized in the same way as that of the quasi mode for
comparison. As an example, we consider the same random
structures as in Fig. 1 and introduce gain into the central
region x.=L/2 of length L,=L;+4L,=8.84+3.03
=11.87 um (marked by two vertical lines in Fig. 2). Figure
3(a) plots k( and &;/(k;) for all the lasing modes within the
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Fig. 3. (Color online) (a) Normalized threshold gain %;/(k;) ver-
sus the frequency % of lasing modes in the random systems with
ny=2.0 (solid squares) and n;=1.05 (open circles) under local ex-
citation (between the two vertical lines in Fig. 2). (b) Normalized
frequency spacing Aky/(Aky) of neighboring lasing modes in the
systems with n;=2.0 (solid squares) and n;=1.05 (open circles)
under local excitation.

wavelength range of 500—750 nm. Comparing Fig. 3 with
Fig. 1, we find some quasi modes fail to lase under local
pumping, no matter how high the pumping level is. The
other modes lase, but their wave functions can be signifi-
cantly modified by the particular local excitation. Both of
the two modes shown in Fig. 2 lase under the local pump-
ing configuration we consider. Their intensity distribu-
tions are plotted in Fig. 2. The mode in Fig. 2(a) is local-
ized within the pumped region, and its spatial profile is
barely modified by the local gain. In contrast, the mode in
Fig. 2(b) is spatially extended and has less overlap with
the central gain region. The intensity distribution of the
lasing mode differs notably from that of the quasi mode.
The exponential growth of I(x) toward the system bound-
aries is suppressed outside the gain region, wheres inside
the gain region I(x) grows exponentially toward the ends
of the gain region at a rate higher than that of the quasi
mode. These behaviors can be explained by the spatial
variation of gain. Outside the pumped region, there is no
optical amplification; thus light intensity does not in-
crease exponentially. Within the pumped region, the
faster intensity growth results from the higher threshold
gain for lasing with local pumping than that with global
pumping. Nevertheless, the close match in the number
and spatial position of intensity maxima justifies the cor-
respondence of the lasing mode to the quasi mode.
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We repeat the calculation with many modes under the
same pumping configuration and find the weight of a
mode within the gain region is often enhanced. To quan-
tify such enhancement, we introduce a parameter &,
which is equal to the ratio of I(x) integrated over the
pumped region to that over the entire random system. We
compare the values of 6 for the lasing modes under local
excitation with those of the corresponding quasi modes.
For the mode in Fig. 2(b), §is increased from 0.33 for the
quasi mode to 0.41 for the lasing mode, whereas for the
mode in Fig. 2(a) § remains at 0.98. Thus the effect of lo-
cal pumping is stronger for the modes in the weakly scat-
tering system. This is because when scattering is weak
the local gain required for lasing is high. The feedback
within the pumped region is greatly enhanced, leading to
the modification of mode profile.

We also investigate the fluctuations in threshold gain
and frequency spacing of lasing modes under local excita-
tion. Figure 3(a) shows that the lasing threshold fluctua-
tion for the random system with n;=1.05 is smaller than
that with n;=2.0. Since the number of lasing modes un-
der local pumping is usually less than that of quasi
modes, the average mode spacing (Ak) is increased. Fig-
ure 3(b) plots the frequency spacing Ak of adjacent lasing
modes normalized to the average value (Ak(). There is
more fluctuation in the mode spacing for the random sys-
tem with ny=2.0 than that with n;=1.05. Hence, with lo-
cal gain the frequency spacing of lasing modes is more
regular in the undercoupling regime than in the overcou-
pling regime. This result is similar to that with uniform
gain.

Although the local pumping enhances the feedback
within the pumped region, the feedback outside the
pumped region cannot be neglected. To demonstrate this,
we calculate the lasing modes in the reduced systems of
length L, by replacing the random structures outside the
gain region with a homogeneous medium of n.4 The re-
duced system has uniform gain instead of the gain profile
f(x) in the original system. The results are shown in Fig.
4(a) for the system with n;=2.0 and in Fig. 4(b) for the
system with n;=1.05. The number of lasing modes in the
reduced system is less than that in the original system
under local pumping. In fact, the lasing modes are gener-
ally different, with the only exception being a few modes
localized within the gain region in the system with ny
=2.0. Moreover, the lasing threshold in the reduced sys-
tem is higher than that in the original system with local
gain. These differences are attributed to the feedbacks
from the random structure outside the pumped region of
the original system. It demonstrates that the scatterers in
the unpumped region also provide feedback for lasing. By
comparing Figs. 4(a) and 4(b), we find the difference in
the lasing threshold between the original system under
local pumping and the reduced system is smaller for the
system with n;=1.05 than that with n;=2.0. It indicates
the contribution from the scatterers outside the gain re-
gion to lasing is reduced as the system moves further into
the undercoupling regime.

We note that local pumping introduces inhomogeneity
into the imaginary part of the refractive index, which gen-
erates additional feedback for lasing. To check its effect,
we simulate lasing in a homogeneous medium with the
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Fig. 4. (Color online) Threshold gain k,/(k;) of lasing modes in
the (original) random system of length 24.1 um with local exci-
tation in the central region of length 11.87 um (solid squares),
compared with the threshold gain of lasing modes in the reduced
system of length 11.87 um under uniform excitation (open
circles) and the threshold gain of lasing modes in the homoge-
neous medium with n,; under local excitation in the region of
length 11.87 um. (a) ny=2.0, n;=1.3361; (b) ny=1.05, n.
=1.0168.

average refractive index n.g The local gain profile f(x) re-
mains the same. Only the spatial variation of k;(x)
=kon;f(x) provides feedback for lasing. As shown in Figs.
4(a) and 4(b), the lasing thresholds are much higher than
those in the random systems, even for the system with
ng=1.05. This result demonstrates that for the random
systems in Figs. 3 and 4 the feedbacks for lasing under
local pumping are predominately caused by the inhomo-
geneities in the real part of the refractive index n(x) or
the wave vector k,.(x)=kon(x). However, a further reduc-
tion in ng4 or L, could make the feedback due to the inho-
mogeneity of &;(x) significant.

4. CONCLUSION

We have developed a numerical method to calculate the
quasi modes of 1D passive random systems and the lasing
modes at the threshold with either global or local pump-
ing. We identified two regimes for the quasi modes: the
overcoupling regime (L > ¢) and undercoupling regime (L
<¢). In the undercoupling regime the electric field of a
quasi mode grows exponentially toward the system
boundaries, whereas in the overcoupling regime the field
maxima are located inside the random system. The fre-
quency spacing of adjacent modes is more regular in the
undercoupling regime, and there is less fluctuation in the
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decay rate. The distinct characteristic of the quasi modes
in the two regimes results from the different mechanisms
of mode formation. In an overcoupling system, the quasi
modes are formed mainly by the interference of multiply
scattered waves by the particles in the interior of the ran-
dom system. In contrast, the feedbacks from the scatter-
ers close to the system boundaries play a dominant role in
the formation of quasi modes in an undercoupling system.
The contributions from the scatterers in the interior of
the random system to the mode formation are weak but
not negligible. They induce small fluctuations in mode
spacing and decay rate. As the scattering strength is in-
creased, the feedbacks from those scatterers in the inte-
rior of the system get stronger, and the frequency spacing
of the quasi modes becomes more random.

In the presence of uniform gain across the random sys-
tem, the lasing modes (at the threshold) have one-to-one
correspondence with the quasi modes in both overcou-
pling and undercoupling systems. However, the lasing
modes may differ slightly from the corresponding quasi
modes in frequency and spatial profile, especially in the
undercoupling systems. This is because the introduction
of uniform gain removes the feedback caused by spatial
inhomogeneity of the imaginary part of the wave vector
within the random system and creates additional feed-
back by the discontinuity of the imaginary part of the
wave vector at the system boundaries. As long as the scat-
tering is not too weak, the quasi modes are only slightly
modified by the introduction of uniform gain to a random
system, and they serve as the lasing modes. This conclu-
sion is consistent with that drawn from the time-
dependent calculations [4,5,26]. Hence, with the knowl-
edge of the decay rates of the quasi modes, in conjunction
with the gain spectrum, the first lasing mode can be pre-
dicted. Because of the correspondence between the lasing
modes and the quasi modes, the frequency spacing of ad-
jacent lasing modes is more regular in the undercoupling
systems with smaller mode-to-mode variations in the las-
ing threshold.

When optical gain is introduced into a local region of
the random system, some quasi modes cannot lase, no
matter how high the gain is. The other modes can lase,
but their spatial profiles may be significantly modified.
Such modifications originate from strong enhancement of
feedbacks from the scatterers within the pumped region.
This enhancement increases the weight of a lasing mode
within the gain region. Nevertheless, the feedbacks from
the scatterers outside the pumped region are not negli-
gible. Moreover, the spatial variation in the imaginary
part of the refractive index generates additional feedback
for lasing. As the pumped region becomes smaller, the
number of lasing modes is reduced, and the frequency
spacing of lasing modes is increased. In an undercoupling
system, the regularity in the lasing mode spacing remains
under local excitation. Our calculation results will help to
interpret the latest experimental observations [22,23] of
spectral periodicity of lasing peaks in weakly scattered
random systems under local pumping. We note that the
effect of local excitation can be significant in an overcou-
pling system if the size of the pumped region is much
smaller than the spatial extent of a localized mode or the
spatial overlap between the pumped region and the local-
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ized mode is extremely small. Hence, caution must be ex-
erted in using the decay rates of quasi modes to predict
the lasing threshold or the number of lasing modes under
local excitation. Finally, we comment that the increase in
the mode concentration in the gain region by local pump-
ing has a physical mechanism distinct from the
absorption-induced localization of lasing modes in the
pumped region [11]. The former is based on selective en-
hancement of feedback within the gain region, whereas
the latter is based on the suppression of the feedback out-
side the pumped region by reabsorption.
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