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Absorption-induced confinement of lasing modes in
diffusive random media
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We present a numerical study of lasing modes in diffusive random media with local pumping. The reabsorp-
tion of emitted light suppresses the feedback from the unpumped part of the sample and effectively reduces
the system size. The lasing modes are dramatically different from the quasi modes of the passive system
(without gain or absorption). Even if all the quasi modes of a passive diffusive system are extended across
the entire sample, the lasing modes are still confined in the pumped volume with an exponential tail outside
it. The reduction of effective system volume by absorption broadens the distribution of decay rates of quasi
modes and facilitates the occurrence of discrete lasing peaks. © 2005 Optical Society of America
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Over the past few years, there have been many, stud-
ies on random lasers with coherent feedback.' In a
strongly scattering active medium, recurrent scatter-
ing events could provide resonant feedback for lasing.
With sufficient gain, lasing oscillation might occur at
discrete frequencies that are determined by the inter-
ference of scattered light. In our initial experiments
with highly disordered semiconductor powder and
polycrystalline films, the transport mean free path
was short, leading to small laser cavities.? Our ex-
perimental observation was well reproduced in the
numerical simulation of lasing in localized modes.””
However, lasing with coherent feedback was also re-
alized in weakly scattering random media.®® Tight
focusing of pump light was necessary to observe dis-
crete lasing peaks; that is, the pump beam was fo-
cused to a region much smaller than the entire
sample. Imaging of laser light on the sample surface
revealed that the lasing modes were not extended
over the entire random medium; instead they were
located inside the g)umped region, with an exponen-
tial tail outside it.” Since the quasi modes of a ran-
dom system far from the onset of localization were
usually extended states, the lasing modes were re-
garded as some type of anomalousl%f localized states,
either almost localized states! or prelocalized
states.”!2

The anomalously localized states should be rare in
the diffusive samples. Yet no matter where on the
sample the pump beam is focused, we always observe
lasing modes that are spatially confined in the
pumped region. Moreover, the lasing threshold does
not fluctuate much as the pump spot is moved across
the random medium. We believe the contradiction to
the theory of anomalously localized states originates
from the assumption that lasing occurs in the quasi
modes of the passive random medium. In this Letter
we demonstrate with numerical simulation that this
assumption is not valid when absorption at the emis-
sion wavelength is significant outside the pumped
volume. The reabsorption of emitted light suppresses
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the feedback from the unpumped part of the sample
and effectively reduces the system size. The lasing
modes are formed by the interplay between gain and
absorption, and therefore are dramatically different
from the quasi modes of the passive system (without
gain or absorption). Even if all the quasi modes of a
passive diffusive system are extended across the en-
tire sample, the lasing modes are still confined in the
pumped volume with an exponential tail outside it.

We use the finite-difference time-domain method to
simulate lasing in the transverse magnetic (TM)
modes of two-dimensional (2D) random media. The
disordered system is a collection of dielectric cylin-
ders placed at random in vacuum. The diameter of
the cylinders is 160 nm, the refractive index n=2,
and the filling fraction is about 50%. The total size of
the system is 9.2 um X 9.2 um. The random medium
is surrounded by vacuum, which is termlnated by a
uniaxial perfectly matched absorbing layer.'® The
wavelength of interest is around 650 nm. To verify
that light transport in the 2D system is diffusive, we
calculate the continuous wave (cw) transmission
through a slab of the random medium with the thick-
ness L=9.2 um. The ensemble-averaged intensity
profile (I(z)) is fitted well with the diffusion expres-
sion (L+zy-2)/ (L+2zo),14 where z is the coordinate
normal to the slab. The extrapolation length z is re-
lated to the transport mean free path [ as zy/l
=7w/4(1+R)/(1-R). R is the angularly averaged
boundary reﬂectlon coefficient, which accounts for in-
terface effects.'* Using the expression for R in the 2D
system,’ we estimate z,/l=1.85. The value of z, is
extracted from the fitting of (I(z)), which gives [
=1.3 um. The small value of [/L ~0.12 as well as the
large value of k[~13 ensures that the 2D random
system of lateral dimension L=9.2 um is in the diffu-
sive regime.

We start with a study of the quasi modes (eigen-
modes of the Maxwell’s equations) in the passive ran-
dom medium. A short excitation pulse, whose spec-

© 2005 Optical Society of America



September 15, 2005 / Vol. 30, No. 18 / OPTICS LETTERS

trum is centered at \y=650 nm, is launched in the
center of the sample. After the excitation pulse is
gone, the total electromagnetic energy stored inside
the random system U(¢) exhibits a nonexponential
decay in time as a result of multimode excitation.
However, after a sufficiently long time, U(¢) changes
to an exponential decay because only one mode with
the longest lifetime is left inside the system. The ex-
ponential decay rate of U(¢) is equal to the decay rate
v of this quasi mode. For example, for one realization
shown in Fig. 1(a), the Fourier transform of electric
field E(¢) gives the wavelength of the quasi mode \
=646 nm. The spatial profile of the electric field be-
comes stable in time, and it reflects the wave function
of this longest-lived quasi mode. As shown in Fig.
1(a), this quasi mode is extended across the sample.
When we remove some cylinders at the sample
boundary, e.g., the cylinders outside a circle of radius
L/2 from the mode center, the mode profile changes
dramatically. The sensitivity of the quasi mode to the
boundary confirms that it is an extended state. Fig-
ure 2 shows the radial dependence of the angularly
integrated intensity, I,(r)=[|E(r, 6)|>rd6, where r is
the radial coordinate, 6 is the polar angle, and E(r, 6)
is the electric field distribution of the quasi mode. For
comparison, the radial profile of the lowest diffusion
mode cos[mx/(L+2z¢)]cos[my/(L+2z,)] is also plotted
in Fig. 2. It describes I,(r) relatively well.

Now we introduce gain and reabsorption into the
random medium. In the previous studies®* the gain
medium is modeled as a four-level atomic system
where the lasing transition is from the third level to
the second level. In the absence of pumping, all the
atoms are assumed to be in the first level. Since the
electronic population in the second level is zero, there
is no absorption at the lasing wavelength in the un-
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Fig. 1. Spatial intensity distribution of (a) the quasi mode
with the longest lifetime in a passive diffusive system, (b)
the (first) lasing mode with gain inside the circular region
near the center and no absorption outside it, (¢) the (first)
lasing mode with gain inside the circular region near the
center and absorption outside it, (d) the (first) lasing mode
with random medium beyond one [, (dashed circle)
removed.
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Fig. 2. Radial dependence of the angularly integrated in-
tensities of the modes shown in Fig. 1: (a) is compared with
the diffusive mode profile; the tail of (c) is fitted with an ex-
ponential decay; the falloff of (d) outside the random me-
dium is compared with 1.

pumped region. To simulate spatially nonuniform
gain and reabsorption of the laser emission, we use
the semiclassical Lorentz model.'® The linear gain
(absorption) is modeled by negative (positive)
conductance.’ By introducing negative conductance
to the pumped region and positive conductance to the
unpumped region, we are able to describe both light
amplification inside the pumped region and reabsorp-
tion of the emitted light outside the pumped region.

More specifically, the cylinders have the
conductance
oo/2 oo/2
o(w) = (1)

+ .
1 +i((1)— (1)0)T2 1 +i((1)+ (1)0)T2

The sign of oy determines whether light is amplified
or absorbed, whereas the amplitude of o sets the
magnitude of gain/absorption; wy and 1/T5 determine
the center frequency and width of the gain/
absorption spectrum, respectively. The absence of
gain saturation in Eq. (1) is not crucial in our simu-
lation, as our goal is to find the first lasing mode at or
slightly above the lasing threshold. A seed pulse is
launched at £=0 to initiate the amplification process.
The lasing threshold is defined by the minimum gain
coefficient (—og) at which the electromagnetic energy
stored inside the random system grows in time and
eventually diverges.

We first consider the case of local pumping with no
absorption outside the pumped region. We use the
same random sample as in Fig. 1(a) and introduce
gain to the central part, marked by the circle in Fig.
1(b). The gain spectrum is centered at 650 nm and
has a width of 52 nm. The lasing mode shown in Fig.
1(b) is identical to the quasi mode of the passive sys-
tem in Fig. 1(a). Although optical gain is concen-
trated within the circle near the center, the lasing
mode is extended throughout the entire sample. As
we reduce the pump area by decreasing the radius of
the circle, the lasing threshold is increased, but the
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lasing mode profile remains the same. This result in-
dicates that the lasing mode in a diffusive random
medium is the extended quasi mode of the passive
system, even when the pumped region is smaller
than the mode size.

However, the above statement is valid only when
there is no absorption outside the pumped region,
which is not the case in most experiments. For ex-
ample, rhodamine dye, which is widely used to pro-
vide gain for random lasers, has significant overlap
between its absorption band and its emission band.
Therefore photons that are emitted by the excited
rhodamine molecules inside the pumped region may
diffuse into the surrounding unpumped region and be
absorbed by the rhodamine molecules there. The ab-
sorption reduces the probability of light returning to
the pumped region and thus suppresses the feedback
from the unpumped region. To simulate the reabsorp-
tion, we introduce absorption outside the pump area.
The bulk absorption length (without scattering) [,
=1.06 um. Figure 1(c) shows the lasing mode profile,
which is very different from that in Figs. 1(a) and
1(b). The wavelength of the lasing mode also differs
by about 4 nm. Therefore the lasing mode in the pres-
ence of reabsorption is a new mode, completely differ-
ent from the quasi mode of the passive system. Be-
cause of reabsorption outside the pump area, the
lasing mode is confined more or less inside the
pumped region. The radial profile of the lasing mode,
shown in Fig. 2, features an exponential decay out-
side the pumped region. The decay length, ~0.8 um,
is equal to the diffusive absorption length [,
=(1,1/2)V2. To confirm this result, we simulate trans-
mission of a cw plane wave through a slab of disor-
dered absorbing medium and obtain the same at-
tenuation length.

Performing calculations similar to those shown in
Figs. 1 and 2 for many disorder configurations, we
find that the observed effect is indeed general. The
reabsorption, which suppresses the feedback from
the unpumped part of the sample, effectively reduces
the system size. To check this conjecture, we remove
all the random medium beyond one /, from the pump
area [dashed circle in Fig. 1(d)] and repeat the calcu-
lation. The frequency and spatial profile of the lasing
mode remain the same [Fig. 1(d)], despite the drastic
change of the random system. The radial profile of
the lasing mode outside the random medium (Fig. 2)
exhibits a trivial »~! dependence. This result indi-
cates that the lasing mode is an extended state
within the effective volume, V4, that includes the op-
tically active region plus the buffer layer of thickness
[, around it.

The reduction of the effective system volume leads
to a decrease of the Thouless number &= 6v/Av,
where 6v and Av are the average mode linewidth and
spacing, respectively. In a 3D diffusive system J&v
« V2% and AvxV}; therefore 6=V, The smaller
the value of &, the larger the fluctuation of the decay
rates y of the quasi modes.’*'® The variance of the
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decay rates'? 0'2y:<y>2/ S, where the average decay
rate (y)~D/ ng? We believe the broadening of the de-

cay rate distribution along with the decrease of the
total number of quasi modes (within V) is respon-
sible for the observation of discrete lasing peaks in
the tight focusing condition. Despite its value being
reduced, the effective Thouless number is still much
larger than 1 because of weak scattering. As a result,
the lasing modes are the extended states within the
effective volume. Because o,/(y)<1, the minimum

decay rate is still close to (y), leading to relatively
small fluctuation of lasing threshold.'™?
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