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Statistics of transmission in one-dimensional disordered systems: Universal characteristics
of states in the fluctuation tails
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We numerically study the distribution function of the conductattcansmissioh in the one-dimensional
tight-binding Anderson and periodic-on-average superlattice models in the region of fluctuation states where
single parameter scaling is not valid. We show that the scaling properties of the distribution function depend
upon the relation between the system’s lengthnd the lengthg determined by the integral density of states.

For long enough systemk> |, the distribution can still be described within a new scaling approach based
upon the ratio of the localization length. andl. In an intermediate interval of the system’s lengjthl o,

<L <lg, the variance of the Lyapunov exponent does not follow the predictions of the central limit theorem
and this scaling becomes invalid.
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[. INTRODUCTION rameter scalingSPS in this context means that the distribu-

tion function can be parametrized by a single parameter
Coherent transport properties of disordered systems havtself. As a result, it is expected that all moments of the
been a subject of active research for the last thirty years, butistribution can be expressed in terms of the first moment

complete understanding of this phenomenon even for one(—},> in a universal way. For the second momeérariance o

dimensional models is still absent. Even though the scalinguch a relationship, as it was first conjectured by Anderson
theory, put forward in the pioneering work of Ref. 1, createdet al,? can be presented in the form

a successful conceptual framework for discussing the phe-
nomenon of localization, the theoretical foundation of the
scaling hypothesis itself has not yet been completely under-
stood. One of the principal difficulties that the scaling theory
of localization had to deal with from the very beginning was The entire distribution function of LE for systems with
an absence of self-averaging of the main transport coeffifinite lengths was also derived by several authors in the limit
cients: conductancg or transmissiorT. Therefore, even the of infinitesimally weak local scattering for several
nature of the scaling parameter remained unclear until it wasodels>®° For finite L, this function was found to be non-
realized that the scaling hypothesis has to be applied to th&aussian, but nevertheless, it depended upon a single param-
entire distribution function of the conductance or eter — the localization length.
transmittancé > Thus, in the situations when SPS holds the problem of the
For one-dimensional systems Andersetnal? suggested conductance/transmision distribution function can be consid-
that the most suitable quantity for dealing with the statisticalered as settled. There are spectral regions, however, where
description of conductance is the Lyapunov expor(&is), SPS fails even for locally weak disorder. These are, first of
which can be defined for systems with finite lengtlas all, the regions of fluctuation states, which arise outside of
the initial spectrum because of disorder. This result was first
obtained numerically in Ref. 10 for a periodic-on-average
system and was confirmed by an exact analytical solution of
the Lloyd model(the Anderson model with the Cauchy dis-
tribution of the site energi@s!? Similar results were ob-
tained numerically for the Anderson model with the boX
and dichotomi&® distributions of the site energies, and ana-
lytically for a continuous model with white noise Gaussian
potential®* The analytical calculations of Refs. 11,12 re-
vealed that the criterion for the validity of SPS can be pre-
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The name “Lyapunov exponent” alludes to the fact that the
quantity defined by Eq(1) have the same statistical proper-
ties as the “real” Lyapunov exponent, i.e. the exponential
growth rate— (1/L)In|y| of the norm of the wave functiog.

An important property of LE is that it satisfies a multiplica-
tive central limit theorefhand approaches a nonrandom limit
v when the size of the systetends to infinity. The local- sented in the form,.>1, wherel is a new scale intro-

ization lengthljoc of a state with energi in the infinite .o in Refs. 11,12. For the Lloyd model this scale is
system is related toy aslj.=y~*. At finite L, yis aran-  defined in terms of the imaginary part of the Lyapunov ex-
dom quantity with mean value equal 49 (y)=1. The dis-  ponent, which, according to Thoulé3ss proportional to the
tribution of LE is the main object of research in the field of integral density of states. Therefolg,can be presented in
one-dimensional localization. The hypothesis of single pathe form
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a problem suggested, for instance in Ref. 18, applies to only
|s=m. () one particular model, and, actually involves different criteria
for different spectral regions. In contrast, the criterion based
where N(E) is the integral density of states between theon | introduced in Refs. 11,12 was proven to work for the
genuine boundary of the spectrum, the endigig normal-  entire spectrum of the variety of different models, and offers,
ized by the total number of states in the system, arisla  therefore, a universal approach to the verification of SPS.
distance between the neighboring sites. The definitioh of The violation of SPS in the spectral region of fluctuation
in this form can be easily generalized to other models astates rises a question about the properties of the probability
well, and it was shown numerically that the SPS criteriondistribution of LE in these regions. Recently, a significant
based upoihs works for such models as the Anderson modelprogress in this direction was achieved in Refs. 14,23. In the
with box"*?and dichotomit® distributions of site energies, former paper, the first four moments of this distribution were
a Kronig-Penney-like model with a periodic-on-average disfound analytically for the Anderson model with a Gaussian
tribution of barrier widths;*?and a model of a scalar wave white-noise potential. The authors of the latter paper used
propagating in an one-dimensional absorbing disorderedumerical simulations to develop a macroscopic scaling ap-
medium®® The case of periodic-on-average models involvesproach to this problem, and one which could be readily ap-
a system with multiple bands, and in this c&$&) must be  plied to a wide variety of different systems. It was shown in
understood as the integral density of states between a genRef. 23, that not only second, but also the third moment of
ine boundary of the ban@f the latter exist and the energf  the distribution function of LE for the Anderson tight-
normalized by the total number of states in the band. Moreinding model with diagonal disorder can be fully character-
detailed discussion of this case can be found in Ref. 12. In &ed by a scaling parametar=1,,./l.
recent paper Ref. 17, it was shown how this criterion can be The objective of the present paper is to present more fully
applied to the zero energy states of the Anderson model withnd expand the results of Ref. 23. Considering two quite
a diagonal disorder, where the violation of SPS was observedifferent models of one-dimensional localization such as the
in Ref. 18. Anderson tight-binding model with a diagonal disorder, and
The criterion based ol replaces an original criterion put a model of a scalar wave propagating in a one-dimensional
forward by Andersoret al? that suggested that SPS exists if random superlattice, we demonstrate that one-dimensional
the stationary distribution of the phases of the reflection andiisordered systems allows for a universal scaling description
transmission coefficients is uniform, and the phase relaxes tof the conductancéor transmissiondistribution in the spec-
this distribution over a length, which is much smaller thantral regions of fluctuation states, where standard SPS does
the localization length. By using the hypothesis of the phas@ot work. In particular, we show that the scaling approach
randomization(2) was rederived by many authors for a va- suggested in Ref. 23 describes not only the Gaussian bulk of
riety of different modeld. The phase randomization was the distribution function, but is also capable of describing the
proven rigorously in some one-dimensich&@t?®® and  statistics of large deviations characterized by the third mo-
quasi-one-dimensiorfal?? models, but only for certain parts ment of the distribution.
of the spectrum of the respective systems. At the same time, The results presented in this paper are also relevant to the
it was found that, for instance, in the Anderson model with aproblem of resonant tunneling through disordered potential
diagonal disorder the stationary distribution of the phase isarriers. This problem was considered in the pioneering
not uniform for all values of energl, for which cos }(E/2) work by Lifshits and Kirpichenko¥# for quantum particles
is a rational fraction ofr (it is assumed that in the nonran- incident on a three-dimensional barrier, and was later studied
dom case all site energies in the Anderson model are set i@ many subsequent papefsee reviews in Ref. 25,26
zero, and the interaction parameter is chosen to be equal Mostly, these works were concerned with tunneling through
unity). The strongest deviation of the phase distribution fromthree-dimensional barriers with the dimension in the propa-
the uniform one takes place in the vicinitiesib#0 and the gating direction much smaller than in the perpendicular di-
initial band boundarieE=*+2. While it was found that an rections. Even though the resonant tunneling is in many as-
absence of the phase randomization in both of these casespscts a quasi-one-dimensional proc&sshe transport in the
accompanied by the violation of SB%;128the reference to pure one-dimensional models significantly differs from the
the phase randomization as a criterion for SPS does not seesituation described above. First of all, in one-dimensional
to be satisfactory. Indeed, the initial idea of the phase ranease all states of an infinite sample are localized. Respec-
domization lengttf, used to introduce the criterion for SPS, tively, transmission through a finite, but longer than the typi-
does not actually describe the way the distribution of phaseal localization length, system can be described as a resonant
becomes nonuniform. The absence of the phase randomizander-barrier tunneling at any energy regardless to its posi-
tion does not mean that the relaxation length of the distribution in the initial spectrum. Therefore, the difference between
tion of phase becomes too large and exceeds the localizatidransport in the region of states from the initial allowed
length. What it means is that the stationary distribution ofbands and the fluctuation states, is not as clear as in three-
phase, which can be reached over relatively short distancedimensional situations. Therefore, the problem of transport
is merely not uniform. Thus, the problem of a criterion for via fluctuation states was not considered as a separate prob-
SPS is simply replaced by the problem of finding a criterionlem in the area of one-dimensional localization until very
describing the transition between uniform and nonuniformrecently*'*2Second, the main quantity of interest in the case
stationary distributions of the phase. A solution for the latterof three dimensional barriers is the total transmittance across
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the entire area of the barrier, which is determined by the sum Both these models can be studied using the transfer ma-
of individual transmissions through independent quasi-onetrix approach, in which the propagation of the excitation
dimensional channels or filamer#s?®® This quantity ap- along the system is presented in the following form:
proaches a nonrandom limit when the area of the barrier

tends to infinity. In a pure one-dimensional case the self- Um+1= TmUm, (6)
averaging quantity is the Lyapunov exponent, which be herev,, is a two-dimensional state vector, which presents

comes nonrandom when the length of the system becom ; .
infinite. In a sense, the pure one-dimensional case is an oi%e state of the system at thth site (or mth interface be-

posite limit to the one considered for three-dimensional bar Veen the layepsandT, is the transfer matrix describing the

riers. At the same time, solutions of the one-dimensionaf:r]""(;lgllemOf ﬂt“St statet at ondetglsireetfstep. It:(')r ;‘he A?r(]jerfslon
problem can be used to describe barriers whose lengths odel the state vector and the transter matrix have the fol-

larger than the typical localization length of individual chan- owing forms, respectively:

nels.
Another important application of the problem studied in vm:( Ym ) 7)
this paper lies in the field of random lasing, which has be- Pn+1

come an area of active reseafCht is anticipated that using

localized modes of a strongly scattering disordered medium, E-U, -1
one can obtain very low-threshold lasing. Disordered photo- Tm= 1 0
nic crystals, which support fluctuation photon states in the

band gaps of the underlying periodic structures, can play afor the second model the state vector can be defined as
important role in achieving this objecti?&?° The results

®

presented in this paper will help to understand the unusual m
statistical properties of the lasing threshold and the nature of Um= g ©)
lasing modes in such structures. m
where i, and i/, are the values of the wave functiaf(x)
Il. MODELS AND TECHNICAL DETAILS and its derivative at thenth interface between the layers.
The transfer matrix in this case takes the form
In this paper we study two models of one-dimensional
Anderson localization: a classical Anderson tight-binding cogkmdm) (1K) sin(kydy)
model with a (_:iiagon_al disorder, and a scal'ar wave propagat- m= — K sin(Kydyn) cogkdy) ' (10
ing in a one-dimensional random superlattice. The Anderson
model is described by the equation of motion wherek,,=ky/e,,. The most important property of the trans-
fer matrices is that the transfer matrix, describing the
Ume1+ ¥m_1+(Un—E) =0, (4)  evolution of the initial state vector across thesites(slabs
is equal to the product of the one-step matrices
where random on-site energikk,, are described by a uni-
form probability distribution M
Tu= E[ T (12)
P(U,)= 20 Unl<U, Using the transfer matrices, we calculate the finite size LE,
which for both models is defined as
0, |Uyl>U.
The propagation of a scalar wave is described by a regular ;,: E nHTMUOH , (12)
wave equation L ol

whereL characterizes the total length of the system. For the
Anderson modelL=M if the distance between adjacent
sites is chosen as a unit of length, and for the wave equation,
L is a sum of the lengths of all slabs, and is a random quan-
with a piece-wise dielectric function, corresponding to a su-ity.

perlattice consisting of two types of layers with dielectric ~We calculate LE iteratively using E¢L2) starting with an
constantss; ande,, respectively. The width of the layers of arbitrary initial vectorv,. The resultant vector is renormal-
the first kind is kept constant and is equaldg while the ized after every ten iterations in order to avoid any loss of
width of the layers of the second type was chosen from a&ccuracy? Since we are interested in statistics of finite size
random distribution. In this paper, we report the results forllE, we do not try to find its limiting value fot. —o. In-

(i) d, uniformly distributed in the intervald,)— 6,(d,)+ &  stead, we keep the size of the system fixed while calculating
(uniform distribution and (i) d, taking one of two equally 7 for different realizations of our systems. At the same time,
probable values- 6/y/3 and + &/\/3 (dichotomic distribu-  since we are interested in asymptotic properties of the distri-
tion). bution, we consider only sufficiently long systems, for which

— +k2e(x) =0, (5)
dx
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FIG. 2. Typical dependence of the scaling parameten « for

FIG. 1. The dependence of the phase near the band gap regithe Anderson model. The width of the distribution of disorder
(1.44<ka<1.56) separating the first and the second bands in thehanges frontJ =0.08 toU=0.16. Curves corresponding to differ-
superlattice modeld, was taken from a uniform distribution with ent values of the width are not distinguishable. In the inset the
5=0.1,L/a=10". region of smallk is shown in the log-log scale.

L . . IIl. SCALING DESCRIPTION OF THE MOMENTS OF THE
L>1,,c, Where the localization length, is defined through DISTRIBUTION FUNCTION

the average value of LE dg.=(y) *.

Another quantity of interest in this work is the lendth
which is expressed in terms of the integral density of state
N(E), Eq.(3). For the Anderson modeMi(E) can be com-
puted with the help of the node-counting theorértarting

It was shown in Refs. 11,12 that the variange of the
Lyapunov exponent in the Lloyd model can be conveniently
described in terms of a relationship between two scaling
variablesr defined as

with an arbitrary initial vector and the energy valugs< 2L

—2—U, which are certainly outside of the energy spectrum T=— (13
of the system, we counted how many times the sign of the Y

wave function changes over the length of the system foand«, defined as

different values oft. Each new node corresponds to a new

state of the syster. . ||_oc 14

For the random superlattice model we find it more conve-
nient to use the phase formalism described, for instance, in ] .
Ref. 5. Within this formalism the density of state is expressedn this paper we show that the variance of LE in more ge-
in terms of the phase variabtg=tan (¢'/4). In the case N€rc models can also be described in terms of the scaling
of systems with a single band spectrum, this phase chang&dnction 7(«). .
between 0 andr whenE sweeps the spectrum of the system In order to demonstrate this result we computédand

from one band boundary to the other. In the superlattice, th%Or different values of the energy, strength of disorder, and

spectrum of the wave in the absence of disorder consists ngth of the system for both models under considerations.
pec : : he results of these calculations were presented in the form
multiple bands. In this case, the phase increases bgross

lowed band q q o of the functionr(«), which is shown in Figs. 2 and 3 for the
every allowed band, and stays constant and equal®d  apqerson model and the superlattice model, respectively.

inside anynth forbidden band. If disorder in our model is Not e data included in these figures correspond to systems
too strong, the regions of the constant phase are preservegy, L>1¢,l,,c. The first important result revealed by this
even in the presence of random fluctuations Fig. 1, and Cafigures is that all the data lie on a single curve, when ex-
be used for identifying the fluctuation boundaries of thepressed in terms of the variablesand x for both models.
bands in the disordered system. Then we can introduce Bhis result confirms our general conjecture that the second
density of statedl(E) for asingle bandwhich is normalized moment of the distribution function of LE can be universally
to change from 0 to 1, when energy spans from one fluctuadescribed in terms of variablesand « regardless the micro-
tion boundary to anotheN(E) normalized this way is sub- scopical nature of the models under consideration. While the
stituted in Eq.(3) in order to calculaté, for the superlattice form of the function(«), may differ for different models,
model. When disorder becomes stronger the regions of corits essential qualitative properties show a degree of univer-
stant phase disappear, and the notion of the single band desality: 7(«)=1 for «>1, and it steeply decreases far

sity of states becomes meaningless. In our calculations we&l. We are most interested here in the latter region, where
always make sure to avoid such situations. the fluctuation states arise. For the Lloyd model(7/2)x
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FIG. 3. Dependence of the scaling parameteon « for the
for the Anderson model.

dichotomic distribution(superlattice modglof d, with §=0.1,

0.125, 0.15, 0.175, and 0.2. For every value of disorder we t00k 136 hresented in Table I. These results demonstrate that while
lengthsL, ranging from 320 to 20 000 Iz?lyers. le'ferentlof'fset valye the nature of the scaling parameters is universal for both
of 7, was compensate@ee text In the inset the same is shown in - qqels; the numerical values of the respective parameters
the log-log scale. are model dependent. An interesting question is whether the
U2 S values ofC and « depend upon the type of statistics of the
for k<1,"“while in the models studied in this paper the respective random parameters of our modsit energy for
dependence of upon« is much steeper. In order to obtain a Anderson model, the layer width for the superlattice mpdel
better insight into the properties of(«) for small k, we  In the case of a superlattice model we found that the change
replotted our numerical data in log-log coordinatese in-  in statistics(from the box to dichotomic distributiordid not
sets in Figs. 2 and)3 Before interpreting these figures we affect the values of the coefficien®anda. For the Ander-
have to note that unlike the case of the Lloyd model, whersson model with the dichotomic distribution of the site ener-
7(0)=0, in the models considered he#¢0), while very  gies the results were inconclusive. Strong noise in the data
small, is not equal to zero. The reason for this is the smalfor the dichotomic process prevented us from positively es-
fluctuations of the LE due to nonresonance tunneling througltablishing equivalency of the coefficients for the two differ-
a random barrier, which contributes toat the fluctuation ~ent types of statistics. . _
spectrum boundary where=0. This small contribution is In the region of fluctuation states, a new intermediate re-
model specific, and in the Anderson model it can be negime of lengthd., in whichl,.<L <l appears. This regime
glected everywhere with exception of a small neighborhoodloes not exist for in-band states. It is natural to anticipate
of the fluctuation spectrum boundaries. This can be seeiat the scaling behavior of our systems in this regime would
from the fact that whilec changes over at least two orders of change. In order to study this question, we divided our data
magnitude, the data for the Anderson motleset in Fig. 2  in groups according to the value &fls, including points
form a straight line with exceptions of a few points corre-With L/Is>1 as well as with./Is<1. Carrying out statistical
sponding to very small values af. According to these re- analysis of the data for fixed values bofl; we were able to

sults, 7(x) has the form obtain dependencies of the parameteranda on L/l ; the
respective results are presented in Figs. 4 and 5. First of all,
7=CK+ Tjpn , (15 we would like to note that these dependencies saturate to

values presented in the Table | fa¥lg>1. This confirms
where 7, stands for the nonuniversal correction discussedur assumption that in this regimedepends upon a single
above. In the superlattice model the value mf, is more parametelk.
significant, and therefore has to be compensated. In order to For shorter systems, however, a new paramdidl,
estimate coefficient€ and x, we select only those data for emerges. For the Anderson model we were able to show that
which Is<L and use linear regression. The results of the fita(L/lg) is best described by the logarithna(L/I)
~In(ls/L), which means that the variance of the Lyapunov
TABLE I. Parameter< anda from Eq. (15) for different mod-  exponents? in this regime demonstrates an anomalous scal-

els. ing with the length of the system:
i 1
Anderson model Superlattice models 2o - eXF[a(L/lS)an]OCL_(lHn x) (16)
C 1.27 1.08 loc
a 0.27 0.40 It is interesting to note that wher decreases, tInx may

become negative resulting i increasing withL. This be-
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FIG. 5. The exponent of the scaling paramete(filled squares, FIG. 6. The logarithm of the scaling parameteior the Ander-
left axis) and the factorC (circles, right axi$ as functions ofL/lI son model as a function of lgg./l. for intermediate values of
for the superlattice model. Large and small symbols correspond tgnergy wherl is not too large. Points are the result of numerical
dichotomic and box distribution al,, respectively. calculations and the straight line is a linear fit.

havior can be qualitgti_vely understood from the following izations, and Eq(16) fails. In this case, an asymptotic be-
arguments: The conditioh<Is means that for the most of hayior of o2 is again controlled by the localization length
the realizations of the random potential no states exist in thglone, as it can be seen in Fig. 7, wherd saturates at
energy interval under discussion. The transmission through, ,ch smaller tham. .

such realizations fluctuates rather weakly. The greatest con- The assumptionsabout the Gaussian form of the distribu-
tribution to the transmission fluctuations is given by those;on of LE is the result of the central limit theorem, and

few realizations that can support at least a single state. Th&rictly speaking is true only asymptotically when-o. At

probability for such realizations to arise grows when thegiia | the distribution function deviates from the Gaussian
length of the system increases, resulting in the respectivg .\ aven in the regime when SPS hofds® However, it
increase ofa?. This behavior, of course, breaks down for ' '

_ was found in Refs. 14,23 that this deviation, as measured by
very large values ofg, which correspond to states close to

, 24 the magnitude of the third and higher moments, increases
the genuine spectral boundary, because for these statiss  gjgnificantly in the vicinity of the band boundary of the ini-
determined by a nonuniversal correctionsgiven by 7, .

) S ; tial spectrum. This result was obtained analytically for the
The behavior ot given by IZEq.(16) can be confirmed by \yhite-noise potential in Ref. 14. The first study of the scaling
plotting directly the functiono“(L) for energies from the rgperties of the third moment was reported in Ref. 23. In
band gap. Figure 6 presents such a plot for the Anderson

model for the value ok equal tox=0.2. It demonstrates a

good agreement with Eq16): the slope of the curve was 037

found to be equal to 1.77, while an estimate for this slope — e .
from Eq. (16) gives 1.78. It should be noted, however, that  -1.04 -
the regime described by E({L6) exists in a relatively narrow | /
interval of energies, at least for the Anderson model with the g 7

box distribution. The reason for this is tHatgrows very fast =3 -1.54 s

in the region of fluctuation states when the energy is shifted” o .

toward the fluctuation spectrum boundary. Very laige 009_2.0_ N

means that only few realizations of our system support at 2 .

least a single state. Therefore, for most realizations transmis ] .

sion occurs via nonresonant under-barrier tunneling. The sta  -2.51 .

tistics of the transmission for this subset of realizations is |

determined by the localization length alorigié exact infin- 10

ity for these realizationsAs a result, we have a competition 5 3 5
between a small number of realizations, supporting states log L/
for which fluctuations of the Lyapunov exponent are large 1077
and grow with the length, and the majority of realizations, in  F|G. 7. The logarithm of the scaling parametefor the Ander-
which o2 is small, and decreasing with length. At very large son model as a function of lgg/1¢ for energies corresponding to
| the contribution too? from the representative realizations extremely large values df,. The saturation occurs at the length
becomes larger than the contribution from the resonant reatiose to the localization length.
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FIG. 8. Dependence of the renormalized third cumutaiht on FIG. 9. Dependence of the parametey=9L?l,,. on « !
energy in the vicinity of the band edge of a pure systeth ( =ls/loc (Anderson modelfor a set of different widths of the dis-
=0.05) for the Anderson model. tribution of the potential 0.004U <0.21. Error bars show the dis-

persion of the results of numerical simulations near a mean values
this part of the paper we expand scaling analysis of Ref. 28hown by squares.
to the superlattice model, and compare the results obtained
for these two models. We consider the scaling properties dparameter€; anda; on L/l (Fig. 11), and found the satu-
the third Cumu|anp:<(ry—<fy>)3>, which characterizes the rated values o;=0.73 anda3=0.52 — the same for both
asymmetry or skewness of the distribution function. Figure glichotomic and box distributions.
shows the energy dependence of the third moment for the
Anderson model. It is seen that this moment significantly Iv. COMPARISON WITH THE GAUSSIAN WHITE NOISE
grows in the vicinity of the initial band boundaries of both MODEL

models, which means that the significant deviation of the ) . -
distribution function of LE from the Gaussian form in the It is well known that under certain circumstances statisti-

region, where traditional SPS violates is a universal phenom@@ Properties of one-dimensional disordered systems in the
enon. vicinity of the band edges of the initial spectrum can be

To analyze scaling properties of the third cumulant weuniversally described by replacing an actual random poten-

consider the dimensionless parameter tial by a Gaussian white noise potentiaDne of the mani-

festations of this fact is that the statistical properties of LE in
3= QLzl loc - (17)

The dependence of; on « for the Anderson model and
superlattice is shown in Figs. 9 and 10, respectively.

One can see from these figures that while data for the
parameterr; are rather noisy, it shows a relatively good __
scaling behavior as a function of the single parametéor 2015
both models. This fact itself is quite remarkable since it dem- = )
onstrates that even in the region, where the distribution func-2 0.1k
tion of LE deviates significantly from the Gaussian form, it &
can still be characterized by two parameters within the scal-g

=

0.25r

ing procedure suggested here. o 0.05
The better data quality for the superlattice model allowed
for a more thorough study of the third moment. The insert in ol
Fig. 10 shows a good scaling behavior similar to Eip): 1010-4 107 10°
17l
. . loc” s, ,
— 73~ Car™+ T3im. (18) -0.0% 0.25 05 0.75 1

Iloc / ls

The limiting valuers i, was substantially smaller tham, ,

so no explicit correction was needed to obtain Fig. 10. FIG. 10. Dependence of, on| ../l for dichotomic distribution
For intermediate lengthd,,.<L<ls, we analyzed data (superlattice modelof d, with 5=0.1, 0.125, 0.15, 0.175, and 0.2.

using approach similar to that employed to obtain Figs. 4 andgtor every value of disorder we took 17 lendthranging from 320

5. For fixed values ot /I we obtained dependencies of the to 20 000 layers. On the insert the same is shown in log-log scale.
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10°
107"}
N
=3
0.25F 0.2 )
1072
% 1 2 iy 3 4 50 ‘ ‘ , ,
s —05 ~0.25 0 0.25 0.5
2=(k-k )/5

FIG. 11. a5 (filled squares, left axjs the exponent ofrs, and

factor C, (circles, right axi$ as functions ofL/l for superlattice FIG. 12. Normalized variance of LE plotted versus parameter
model. Large and small symbols correspond to dichotomic and boi‘k—ki)lé demonstrates a good scaling. Scaling wikh-k;)/ 5*3

distribution ofd,, respectively. predicted by the Gaussian white noise model, shown in the inset,
fails. The data was generated in the superlattice model with the box
the Anderson model with the box distribution of the site distribution for five values 0%=0.1, 0.125, 0.15, 0.175, and 0.2,
energie§4*19'20*32are very similar to those of the continuous L=20000. We |ncluded_ the frequencies from two band edges —
model with the Gaussian white-noise poten‘?ie&nd are the upper edge of the first band and_ the lower edge of_ the second
characterized by the same scaling paranEté]’Z/3, whereE band.é’-\goggth.er, the bznd tgapl) region between the first and the
is the energy counted from the initial band boundary Brid SEconc bancs Is covered entirely.
the variance of the random potential. It was noted in Ref. 12
that the scaling parameteris a single-valued function of the
Gaussian scaling parametd/D?® for the white-noise In this paper we studied scaling properties of the distribu-
model, so that in this case these two parameters are equivden function of the Lyapunov exponent for two one-
lent to each other. An important question now arises: whethedimensional disordered models: the Anderson model with
the apparent universality of the scaling description, sugdiagonal disorder, and the model of a scalar wave propagat-
gested in this paper, is a mere consequence of the fact thating in a random superlattice. The main result of the paper is
the region of the fluctuation states all models can be reduceitat in the region of band-edge and fluctuation states, where
to the Gaussian model, or this universality reveals more funsimple SPS fails, the distribution function can be described
damental properties of this spectral region. This question way two independent scaling parameters: the localization
partially discussed in the Ref. 17, in which it was shown thatength l,,. and an additional length;, introduced in Refs.
the behavior of the second moment of the LE in the vicinity11,12, which is related to the integral density of states. It is
of E=0 of the Anderson model obeys the scaling descriptiorinteresting that not only the second moment of the distribu-
in terms of the parameter, while the Gaussian approxima- tion is described by these two parameters, but so also is the
tion certainly does not work in this part of the spectrum. Inthird moment. This means that even though in the region of
this paper, we address this question considering regions dluctuation states the form of the distribution function
the fluctuation states in the superlattice motiéihe insetto  strongly deviates from the Gaussian, it still can be described
Fig. 12 shows the plot of the parametewversus the Gauss- within the suggested two-parameter scaling approach.
ian scaling parametek( k;)/D??® (D« 5%), wherek; is the Among the other results of the paper we would like to
dimensionless frequency of one of the initial band boundnote the detailed study of the properties of the variance and
aries of the superlattice for several values of the disordethe third moment of LE in the region of fluctuation states.
Moreover, we included the frequencies from the upper edg&Ve showed that both, the normalized variance and the third
of the first band and the lower edge of the second band. Weumulant presented by the scaling functianand 73, dem-
found that instead df/D?” predicted by the Gaussian white onstrate a power law dependence upon the scaling parameter
noise model, our data are better scaled with the parameter. Parameters of this power law dependence were found to
E/DY2, One can see from Fig. 12, that while the Gaussiardepend weakly upon the type of statistics used to character-
scaling fails, the functionr(x) discussed in the previous ize our random systems, but are different for the Anderson
section of the paper gives the best scaling description of thisiodel and the superlattice model. When the length of the
model as well as of the Anderson model. We can concludesystem becomes smaller then we showed that the scaling
therefore, that the scaling parameteretains its universal behavior ofo? deviates significantly from the central limit
significance beyond the validity of the white-noise approxi-theorem behavior even whérremains much bigger than the
mation. localization length.

V. CONCLUSION
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