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Statistics of transmission in one-dimensional disordered systems: Universal characteristics
of states in the fluctuation tails
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We numerically study the distribution function of the conductance~transmission! in the one-dimensional
tight-binding Anderson and periodic-on-average superlattice models in the region of fluctuation states where
single parameter scaling is not valid. We show that the scaling properties of the distribution function depend
upon the relation between the system’s lengthL and the lengthl s determined by the integral density of states.
For long enough systems,L@ l s , the distribution can still be described within a new scaling approach based
upon the ratio of the localization lengthl loc and l s . In an intermediate interval of the system’s lengthL, l loc

!L! l s , the variance of the Lyapunov exponent does not follow the predictions of the central limit theorem
and this scaling becomes invalid.
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I. INTRODUCTION

Coherent transport properties of disordered systems h
been a subject of active research for the last thirty years,
complete understanding of this phenomenon even for o
dimensional models is still absent. Even though the sca
theory, put forward in the pioneering work of Ref. 1, creat
a successful conceptual framework for discussing the p
nomenon of localization, the theoretical foundation of t
scaling hypothesis itself has not yet been completely un
stood. One of the principal difficulties that the scaling theo
of localization had to deal with from the very beginning w
an absence of self-averaging of the main transport co
cients: conductanceg or transmissionT. Therefore, even the
nature of the scaling parameter remained unclear until it
realized that the scaling hypothesis has to be applied to
entire distribution function of the conductance
transmittance.2–5

For one-dimensional systems Andersonet al.2 suggested
that the most suitable quantity for dealing with the statisti
description of conductance is the Lyapunov exponent~LE!,
which can be defined for systems with finite lengthL as

g̃5
1

L
lnS 11

1

gD5
1

L
lnT. ~1!

The name ‘‘Lyapunov exponent’’ alludes to the fact that t
quantity defined by Eq.~1! have the same statistical prope
ties as the ‘‘real’’ Lyapunov exponent, i.e. the exponent
growth rate2(1/L)lnucu of the norm of the wave functionc.
An important property of LE is that it satisfies a multiplic
tive central limit theorem6 and approaches a nonrandom lim
g when the size of the systemL tends to infinity. The local-
ization length l loc of a state with energyE in the infinite
system is related tog as l loc5g21. At finite L, g̃ is a ran-
dom quantity with mean value equal tog, ^g̃&5g. The dis-
tribution of LE is the main object of research in the field
one-dimensional localization. The hypothesis of single
0163-1829/2003/68~17!/174203~9!/$20.00 68 1742
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rameter scaling~SPS! in this context means that the distribu
tion function can be parametrized by a single parameteg
itself. As a result, it is expected that all moments of t
distribution can be expressed in terms of the first mom

^g̃& in a universal way. For the second moment~variance! s2

such a relationship, as it was first conjectured by Ander
et al.,2 can be presented in the form

s25
g

L
. ~2!

The entire distribution function of LE for systems wit
finite lengths was also derived by several authors in the li
of infinitesimally weak local scattering for sever
models.3,8,9 For finite L, this function was found to be non
Gaussian, but nevertheless, it depended upon a single pa
eter — the localization length.

Thus, in the situations when SPS holds the problem of
conductance/transmision distribution function can be con
ered as settled. There are spectral regions, however, w
SPS fails even for locally weak disorder. These are, first
all, the regions of fluctuation states, which arise outside
the initial spectrum because of disorder. This result was fi
obtained numerically in Ref. 10 for a periodic-on-avera
system and was confirmed by an exact analytical solution
the Lloyd model~the Anderson model with the Cauchy di
tribution of the site energies!.11,12 Similar results were ob-
tained numerically for the Anderson model with the box11,12

and dichotomic13 distributions of the site energies, and an
lytically for a continuous model with white noise Gaussi
potential.14 The analytical calculations of Refs. 11,12 r
vealed that the criterion for the validity of SPS can be p
sented in the forml loc. l s , where l s is a new scale intro-
duced in Refs. 11,12. For the Lloyd model this scale
defined in terms of the imaginary part of the Lyapunov e
ponent, which, according to Thouless15 is proportional to the
integral density of states. Therefore,l s can be presented in
the form
©2003 The American Physical Society03-1
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l s5
a

sin@pN~E!#
, ~3!

where N(E) is the integral density of states between t
genuine boundary of the spectrum, the energyE is normal-
ized by the total number of states in the system, anda is a
distance between the neighboring sites. The definition ol s
in this form can be easily generalized to other models
well, and it was shown numerically that the SPS criteri
based uponl s works for such models as the Anderson mod
with box11,12 and dichotomic13 distributions of site energies
a Kronig-Penney-like model with a periodic-on-average d
tribution of barrier widths,11,12 and a model of a scalar wav
propagating in an one-dimensional absorbing disorde
medium.16 The case of periodic-on-average models involv
a system with multiple bands, and in this caseN(E) must be
understood as the integral density of states between a g
ine boundary of the band~if the latter exist! and the energyE
normalized by the total number of states in the band. M
detailed discussion of this case can be found in Ref. 12.
recent paper Ref. 17, it was shown how this criterion can
applied to the zero energy states of the Anderson model
a diagonal disorder, where the violation of SPS was obser
in Ref. 18.

The criterion based onl s replaces an original criterion pu
forward by Andersonet al.2 that suggested that SPS exists
the stationary distribution of the phases of the reflection
transmission coefficients is uniform, and the phase relaxe
this distribution over a length, which is much smaller th
the localization length. By using the hypothesis of the ph
randomization~2! was rederived by many authors for a v
riety of different models.7 The phase randomization wa
proven rigorously in some one-dimensional5,19,20 and
quasi-one-dimensional21,22 models, but only for certain part
of the spectrum of the respective systems. At the same t
it was found that, for instance, in the Anderson model wit
diagonal disorder the stationary distribution of the phase
not uniform for all values of energyE, for which cos21(E/2)
is a rational fraction ofp ~it is assumed that in the nonran
dom case all site energies in the Anderson model are se
zero, and the interaction parameter is chosen to be equ
unity!. The strongest deviation of the phase distribution fro
the uniform one takes place in the vicinities ofE50 and the
initial band boundariesE562. While it was found that an
absence of the phase randomization in both of these cas
accompanied by the violation of SPS,10–12,18the reference to
the phase randomization as a criterion for SPS does not s
to be satisfactory. Indeed, the initial idea of the phase r
domization length,2 used to introduce the criterion for SPS
does not actually describe the way the distribution of ph
becomes nonuniform. The absence of the phase random
tion does not mean that the relaxation length of the distri
tion of phase becomes too large and exceeds the localiza
length. What it means is that the stationary distribution
phase, which can be reached over relatively short distan
is merely not uniform. Thus, the problem of a criterion f
SPS is simply replaced by the problem of finding a criter
describing the transition between uniform and nonunifo
stationary distributions of the phase. A solution for the lat
17420
s

l

-

d
s

u-

e
a
e
th
ed

d
to

e

e,
a
is

to
to

s is

em
-

e
za-
-
on
f
s,

r

problem suggested, for instance in Ref. 18, applies to o
one particular model, and, actually involves different crite
for different spectral regions. In contrast, the criterion bas
on l s introduced in Refs. 11,12 was proven to work for t
entire spectrum of the variety of different models, and offe
therefore, a universal approach to the verification of SPS

The violation of SPS in the spectral region of fluctuati
states rises a question about the properties of the probab
distribution of LE in these regions. Recently, a significa
progress in this direction was achieved in Refs. 14,23. In
former paper, the first four moments of this distribution we
found analytically for the Anderson model with a Gaussi
white-noise potential. The authors of the latter paper u
numerical simulations to develop a macroscopic scaling
proach to this problem, and one which could be readily
plied to a wide variety of different systems. It was shown
Ref. 23, that not only second, but also the third moment
the distribution function of LE for the Anderson tigh
binding model with diagonal disorder can be fully charact
ized by a scaling parameterk5 l loc / l s .

The objective of the present paper is to present more f
and expand the results of Ref. 23. Considering two qu
different models of one-dimensional localization such as
Anderson tight-binding model with a diagonal disorder, a
a model of a scalar wave propagating in a one-dimensio
random superlattice, we demonstrate that one-dimensi
disordered systems allows for a universal scaling descrip
of the conductance~or transmission! distribution in the spec-
tral regions of fluctuation states, where standard SPS d
not work. In particular, we show that the scaling approa
suggested in Ref. 23 describes not only the Gaussian bu
the distribution function, but is also capable of describing
statistics of large deviations characterized by the third m
ment of the distribution.

The results presented in this paper are also relevant to
problem of resonant tunneling through disordered poten
barriers. This problem was considered in the pioneer
work by Lifshits and Kirpichenkov24 for quantum particles
incident on a three-dimensional barrier, and was later stud
in many subsequent papers~see reviews in Ref. 25,26!.
Mostly, these works were concerned with tunneling throu
three-dimensional barriers with the dimension in the pro
gating direction much smaller than in the perpendicular
rections. Even though the resonant tunneling is in many
pects a quasi-one-dimensional process,24 the transport in the
pure one-dimensional models significantly differs from t
situation described above. First of all, in one-dimensio
case all states of an infinite sample are localized. Resp
tively, transmission through a finite, but longer than the ty
cal localization length, system can be described as a reso
under-barrier tunneling at any energy regardless to its p
tion in the initial spectrum. Therefore, the difference betwe
transport in the region of states from the initial allowe
bands and the fluctuation states, is not as clear as in th
dimensional situations. Therefore, the problem of transp
via fluctuation states was not considered as a separate p
lem in the area of one-dimensional localization until ve
recently.11,12Second, the main quantity of interest in the ca
of three dimensional barriers is the total transmittance ac
3-2
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STATISTICS OF TRANSMISSION IN ONE- . . . PHYSICAL REVIEW B 68, 174203 ~2003!
the entire area of the barrier, which is determined by the s
of individual transmissions through independent quasi-o
dimensional channels or filaments.24,26 This quantity ap-
proaches a nonrandom limit when the area of the bar
tends to infinity. In a pure one-dimensional case the s
averaging quantity is the Lyapunov exponent, which b
comes nonrandom when the length of the system beco
infinite. In a sense, the pure one-dimensional case is an
posite limit to the one considered for three-dimensional b
riers. At the same time, solutions of the one-dimensio
problem can be used to describe barriers whose lengths
larger than the typical localization length of individual cha
nels.

Another important application of the problem studied
this paper lies in the field of random lasing, which has b
come an area of active research.27 It is anticipated that using
localized modes of a strongly scattering disordered medi
one can obtain very low-threshold lasing. Disordered pho
nic crystals, which support fluctuation photon states in
band gaps of the underlying periodic structures, can play
important role in achieving this objective.28,29 The results
presented in this paper will help to understand the unus
statistical properties of the lasing threshold and the natur
lasing modes in such structures.

II. MODELS AND TECHNICAL DETAILS

In this paper we study two models of one-dimensio
Anderson localization: a classical Anderson tight-bindi
model with a diagonal disorder, and a scalar wave propa
ing in a one-dimensional random superlattice. The Ander
model is described by the equation of motion

cm111cm211~Um2E!cm50, ~4!

where random on-site energiesUm are described by a uni
form probability distribution

P~Um!5H 1

2U
, uUmu,U,

0, uUmu.U.

The propagation of a scalar wave is described by a reg
wave equation

d2c

dx2
1k2e~x!c50, ~5!

with a piece-wise dielectric function, corresponding to a
perlattice consisting of two types of layers with dielect
constantse1 ande2, respectively. The width of the layers o
the first kind is kept constant and is equal tod1, while the
width of the layers of the second type was chosen from
random distribution. In this paper, we report the results
~i! d2 uniformly distributed in the interval̂d2&2d,^d2&1d
~uniform distribution! and ~ii ! d2 taking one of two equally
probable values2d/A3 and 1d/A3 ~dichotomic distribu-
tion!.
17420
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Both these models can be studied using the transfer
trix approach, in which the propagation of the excitati
along the system is presented in the following form:

vm115Tmvm , ~6!

wherevm is a two-dimensional state vector, which prese
the state of the system at themth site ~or mth interface be-
tween the layers! andTm is the transfer matrix describing th
change of this state at one discreet step. For the Ande
model the state vector and the transfer matrix have the
lowing forms, respectively:

vm5S cm

cn11
D , ~7!

Tm5S E2Um 21

1 0 D . ~8!

For the second model the state vector can be defined as

vm5S cm

cm8
D , ~9!

wherecm andcm8 are the values of the wave functionc(x)
and its derivative at themth interface between the layers
The transfer matrix in this case takes the form

Tm5S cos~kmdm! ~1/km!sin~kmdm!

2kmsin~kmdm! cos~kmdm!
D , ~10!

wherekm5kAem. The most important property of the tran
fer matrices is that the transfer matrixTM describing the
evolution of the initial state vector across theM sites~slabs!
is equal to the product of the one-step matrices

TM5)
1

M

Tm . ~11!

Using the transfer matrices, we calculate the finite size
which for both models is defined as

g̃5
1

L
ln

iTMv0i
iv0i , ~12!

whereL characterizes the total length of the system. For
Anderson model,L5M if the distance between adjace
sites is chosen as a unit of length, and for the wave equa
L is a sum of the lengths of all slabs, and is a random qu
tity.

We calculate LE iteratively using Eq.~12! starting with an
arbitrary initial vectorv0. The resultant vector is renorma
ized after every ten iterations in order to avoid any loss
accuracy.30 Since we are interested in statistics of finite si
LE, we do not try to find its limiting value forL→`. In-
stead, we keep the size of the system fixed while calcula
g̃ for different realizations of our systems. At the same tim
since we are interested in asymptotic properties of the dis
bution, we consider only sufficiently long systems, for whi
3-3
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L@ l loc , where the localization lengthl loc is defined through

the average value of LE asl loc5^g̃&21.
Another quantity of interest in this work is the lengthl s ,

which is expressed in terms of the integral density of sta
N(E), Eq. ~3!. For the Anderson modelN(E) can be com-
puted with the help of the node-counting theorem.31 Starting
with an arbitrary initial vector and the energy valuesE,
222U, which are certainly outside of the energy spectru
of the system, we counted how many times the sign of
wave function changes over the length of the system
different values ofE. Each new node corresponds to a ne
state of the system.31

For the random superlattice model we find it more con
nient to use the phase formalism described, for instance
Ref. 5. Within this formalism the density of state is express
in terms of the phase variablef5tan21(c8/c). In the case
of systems with a single band spectrum, this phase cha
between 0 andp whenE sweeps the spectrum of the syste
from one band boundary to the other. In the superlattice,
spectrum of the wave in the absence of disorder consist
multiple bands. In this case, the phase increases byp across
every allowed band, and stays constant and equal tonp,
inside anynth forbidden band. If disorder in our model is n
too strong, the regions of the constant phase are prese
even in the presence of random fluctuations Fig. 1, and
be used for identifying the fluctuation boundaries of t
bands in the disordered system. Then we can introduc
density of statesN(E) for a single band, which is normalized
to change from 0 to 1, when energy spans from one fluc
tion boundary to another.N(E) normalized this way is sub
stituted in Eq.~3! in order to calculatel s for the superlattice
model. When disorder becomes stronger the regions of c
stant phase disappear, and the notion of the single band
sity of states becomes meaningless. In our calculations
always make sure to avoid such situations.

FIG. 1. The dependence of the phase near the band gap re
(1.44,ka,1.56) separating the first and the second bands in
superlattice model.d2 was taken from a uniform distribution with
d50.1, L/a.106.
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III. SCALING DESCRIPTION OF THE MOMENTS OF THE
DISTRIBUTION FUNCTION

It was shown in Refs. 11,12 that the variances2 of the
Lyapunov exponent in the Lloyd model can be convenien
described in terms of a relationship between two scal
variablest defined as

t5
s2L

g
~13!

andk, defined as

k5
l loc

l s
. ~14!

In this paper we show that the variance of LE in more g
neric models can also be described in terms of the sca
function t(k).

In order to demonstrate this result we computeds2 andl s
for different values of the energy, strength of disorder, a
length of the system for both models under consideratio
The results of these calculations were presented in the f
of the functiont(k), which is shown in Figs. 2 and 3 for th
Anderson model and the superlattice model, respectiv
The data included in these figures correspond to syst
with L@ l s ,l loc . The first important result revealed by th
figures is that all the data lie on a single curve, when
pressed in terms of the variablest and k for both models.
This result confirms our general conjecture that the sec
moment of the distribution function of LE can be universa
described in terms of variablest andk regardless the micro
scopical nature of the models under consideration. While
form of the functiont(k), may differ for different models,
its essential qualitative properties show a degree of univ
sality: t(k)51 for k.1, and it steeply decreases fork
!1. We are most interested here in the latter region, wh
the fluctuation states arise. For the Lloyd modelt5(p/2)k

ion
e

FIG. 2. Typical dependence of the scaling parametert on k for
the Anderson model. The width of the distribution of disord
changes fromU50.08 toU50.16. Curves corresponding to differ
ent values of the width are not distinguishable. In the inset
region of smallk is shown in the log-log scale.
3-4
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for k!1,11,12 while in the models studied in this paper th
dependence oft uponk is much steeper. In order to obtain
better insight into the properties oft(k) for small k, we
replotted our numerical data in log-log coordinates~see in-
sets in Figs. 2 and 3!. Before interpreting these figures w
have to note that unlike the case of the Lloyd model, wh
t(0)50, in the models considered heret(0), while very
small, is not equal to zero. The reason for this is the sm
fluctuations of the LE due to nonresonance tunneling thro
a random barrier, which contributes tot at the fluctuation
spectrum boundary wherek50. This small contribution is
model specific, and in the Anderson model it can be
glected everywhere with exception of a small neighborho
of the fluctuation spectrum boundaries. This can be s
from the fact that whilek changes over at least two orders
magnitude, the data for the Anderson model~inset in Fig. 2!
form a straight line with exceptions of a few points corr
sponding to very small values ofk. According to these re-
sults,t(k) has the form

t5Cka1t lim , ~15!

wheret lim stands for the nonuniversal correction discuss
above. In the superlattice model the value oft lim is more
significant, and therefore has to be compensated. In orde
estimate coefficientsC andk, we select only those data fo
which l s,L and use linear regression. The results of the

FIG. 3. Dependence of the scaling parametert on k for the
dichotomic distribution~superlattice model! of d2 with d50.1,
0.125, 0.15, 0.175, and 0.2. For every value of disorder we took
lengthsL, ranging from 320 to 20 000 layers. Different offset val
of t lim was compensated~see text!. In the inset the same is shown i
the log-log scale.

TABLE I. ParametersC anda from Eq. ~15! for different mod-
els.

Anderson model Superlattice models

C 1.27 1.08
a 0.27 0.40
17420
e
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d
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to
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are presented in Table I. These results demonstrate that w
the nature of the scaling parameters is universal for b
models, the numerical values of the respective parame
are model dependent. An interesting question is whether
values ofC anda depend upon the type of statistics of th
respective random parameters of our models~site energy for
Anderson model, the layer width for the superlattice mod!.
In the case of a superlattice model we found that the cha
in statistics~from the box to dichotomic distribution! did not
affect the values of the coefficientsC anda. For the Ander-
son model with the dichotomic distribution of the site ene
gies the results were inconclusive. Strong noise in the d
for the dichotomic process prevented us from positively
tablishing equivalency of the coefficients for the two diffe
ent types of statistics.

In the region of fluctuation states, a new intermediate
gime of lengthsL, in which l loc!L! l s appears. This regime
does not exist for in-band states. It is natural to anticip
that the scaling behavior of our systems in this regime wo
change. In order to study this question, we divided our d
in groups according to the value ofL/ l s , including points
with L/ l s.1 as well as withL/ l s,1. Carrying out statistical
analysis of the data for fixed values ofL/ l s we were able to
obtain dependencies of the parametersC anda on L/ l s ; the
respective results are presented in Figs. 4 and 5. First of
we would like to note that these dependencies saturat
values presented in the Table I forL/ l s.1. This confirms
our assumption that in this regimet depends upon a singl
parameterk.

For shorter systems, however, a new parameter,L/ l s
emerges. For the Anderson model we were able to show
a(L/ l s) is best described by the logarithma(L/ l s)
; ln(ls/L), which means that the variance of the Lyapun
exponents2 in this regime demonstrates an anomalous sc
ing with the length of the systemL:

s2}
1

Ll loc
exp@a~L/ l s!lnk#}L2(11 ln k). ~16!

It is interesting to note that whenk decreases, 11 lnk may
become negative resulting ins2 increasing withL. This be-

7

FIG. 4. Dependence of the index of the scaling parametea
~filled squares, left axis! and the factorC ~circles, right axis! on L/ l s

for the Anderson model.
3-5
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havior can be qualitatively understood from the followin
arguments: The conditionL! l s means that for the most o
the realizations of the random potential no states exist in
energy interval under discussion. The transmission thro
such realizations fluctuates rather weakly. The greatest
tribution to the transmission fluctuations is given by tho
few realizations that can support at least a single state.
probability for such realizations to arise grows when t
length of the system increases, resulting in the respec
increase ofs2. This behavior, of course, breaks down f
very large values ofl s , which correspond to states close
the genuine spectral boundary, because for these statess2 is
determined by a nonuniversal correction tot given byt lim .

The behavior ofs2 given by Eq.~16! can be confirmed by
plotting directly the functions2(L) for energies from the
band gap. Figure 6 presents such a plot for the Ander
model for the value ofk equal tok50.2. It demonstrates a
good agreement with Eq.~16!: the slope of the curve wa
found to be equal to 1.77, while an estimate for this slo
from Eq. ~16! gives 1.78. It should be noted, however, th
the regime described by Eq.~16! exists in a relatively narrow
interval of energies, at least for the Anderson model with
box distribution. The reason for this is thatl s grows very fast
in the region of fluctuation states when the energy is shif
toward the fluctuation spectrum boundary. Very largel s
means that only few realizations of our system suppor
least a single state. Therefore, for most realizations trans
sion occurs via nonresonant under-barrier tunneling. The
tistics of the transmission for this subset of realizations
determined by the localization length alone (l s is exact infin-
ity for these realizations!. As a result, we have a competitio
between a small number of realizations, supporting sta
for which fluctuations of the Lyapunov exponent are lar
and grow with the length, and the majority of realizations,
which s2 is small, and decreasing with length. At very lar
l s the contribution tos2 from the representative realization
becomes larger than the contribution from the resonant r

FIG. 5. The exponent of the scaling parametera ~filled squares,
left axis! and the factorC ~circles, right axis! as functions ofL/ l s

for the superlattice model. Large and small symbols correspon
dichotomic and box distribution ofd2, respectively.
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izations, and Eq.~16! fails. In this case, an asymptotic be
havior of s2 is again controlled by the localization lengt
alone, as it can be seen in Fig. 7, wheres2L saturates atL
much smaller thanl s .

The assumption about the Gaussian form of the distri
tion of LE is the result of the central limit theorem, an
strictly speaking is true only asymptotically whenL→`. At
finite L the distribution function deviates from the Gaussi
form even in the regime when SPS holds.3,8,9 However, it
was found in Refs. 14,23 that this deviation, as measured
the magnitude of the third and higher moments, increa
significantly in the vicinity of the band boundary of the in
tial spectrum. This result was obtained analytically for t
white-noise potential in Ref. 14. The first study of the scali
properties of the third moment was reported in Ref. 23.

to

FIG. 6. The logarithm of the scaling parametert for the Ander-
son model as a function of log10L/ l s for intermediate values of
energy whenl s is not too large. Points are the result of numeric
calculations and the straight line is a linear fit.

FIG. 7. The logarithm of the scaling parametert for the Ander-
son model as a function of log10L/ l s for energies corresponding t
extremely large values ofl s . The saturation occurs at the leng
close to the localization length.
3-6
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this part of the paper we expand scaling analysis of Ref.
to the superlattice model, and compare the results obta
for these two models. We consider the scaling propertie
the third cumulant%5^(g2^g&)3&, which characterizes the
asymmetry or skewness of the distribution function. Figur
shows the energy dependence of the third moment for
Anderson model. It is seen that this moment significan
grows in the vicinity of the initial band boundaries of bo
models, which means that the significant deviation of
distribution function of LE from the Gaussian form in th
region, where traditional SPS violates is a universal phen
enon.

To analyze scaling properties of the third cumulant
consider the dimensionless parameter

t35%L2l loc . ~17!

The dependence oft3 on k for the Anderson model and
superlattice is shown in Figs. 9 and 10, respectively.

One can see from these figures that while data for
parametert3 are rather noisy, it shows a relatively goo
scaling behavior as a function of the single parameterk for
both models. This fact itself is quite remarkable since it de
onstrates that even in the region, where the distribution fu
tion of LE deviates significantly from the Gaussian form,
can still be characterized by two parameters within the s
ing procedure suggested here.

The better data quality for the superlattice model allow
for a more thorough study of the third moment. The inser
Fig. 10 shows a good scaling behavior similar to Eq.~15!:

2t35C3ka31t3,lim . ~18!

The limiting valuet3,lim was substantially smaller thant lim ,
so no explicit correction was needed to obtain Fig. 10.

For intermediate lengths,l loc!L! l s , we analyzed data
using approach similar to that employed to obtain Figs. 4
5. For fixed values ofL/ l s we obtained dependencies of th

FIG. 8. Dependence of the renormalized third cumulant%L2 on
energy in the vicinity of the band edge of a pure systemU
50.05) for the Anderson model.
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parametersC3 anda2 on L/ l s ~Fig. 11!, and found the satu-
rated values ofC350.73 anda350.52 – the same for both
dichotomic and box distributions.

IV. COMPARISON WITH THE GAUSSIAN WHITE NOISE
MODEL

It is well known that under certain circumstances statis
cal properties of one-dimensional disordered systems in
vicinity of the band edges of the initial spectrum can
universally described by replacing an actual random pot
tial by a Gaussian white noise potential.5 One of the mani-
festations of this fact is that the statistical properties of LE

FIG. 9. Dependence of the parametert35%L2l loc on k21

5 l s / l loc ~Anderson model! for a set of different widths of the dis
tribution of the potential 0.001,U,0.21. Error bars show the dis
persion of the results of numerical simulations near a mean va
shown by squares.

FIG. 10. Dependence oft3 on l loc / l s for dichotomic distribution
~superlattice model! of d2 with d50.1, 0.125, 0.15, 0.175, and 0.2
For every value of disorder we took 17 lengthL, ranging from 320
to 20 000 layers. On the insert the same is shown in log-log sc
3-7
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L. I. DEYCH et al. PHYSICAL REVIEW B 68, 174203 ~2003!
the Anderson model with the box distribution of the s
energies14,19,20,32are very similar to those of the continuou
model with the Gaussian white-noise potential,5 and are
characterized by the same scaling parameterE/D2/3, whereE
is the energy counted from the initial band boundary andD is
the variance of the random potential. It was noted in Ref.
that the scaling parameterk is a single-valued function of the
Gaussian scaling parameterE/D2/3 for the white-noise
model, so that in this case these two parameters are eq
lent to each other. An important question now arises: whe
the apparent universality of the scaling description, s
gested in this paper, is a mere consequence of the fact th
the region of the fluctuation states all models can be redu
to the Gaussian model, or this universality reveals more f
damental properties of this spectral region. This question
partially discussed in the Ref. 17, in which it was shown t
the behavior of the second moment of the LE in the vicin
of E50 of the Anderson model obeys the scaling descript
in terms of the parameterk, while the Gaussian approxima
tion certainly does not work in this part of the spectrum.
this paper, we address this question considering region
the fluctuation states in the superlattice model.33 The inset to
Fig. 12 shows the plot of the parametert versus the Gauss
ian scaling parameter (k2ki)/D

2/3 (D}d2), whereki is the
dimensionless frequency of one of the initial band bou
aries of the superlattice for several values of the disor
Moreover, we included the frequencies from the upper e
of the first band and the lower edge of the second band.
found that instead ofE/D2/3 predicted by the Gaussian whit
noise model, our data are better scaled with the param
E/D1/2. One can see from Fig. 12, that while the Gauss
scaling fails, the functiont(k) discussed in the previou
section of the paper gives the best scaling description of
model as well as of the Anderson model. We can conclu
therefore, that the scaling parameterk retains its universa
significance beyond the validity of the white-noise appro
mation.

FIG. 11. a3 ~filled squares, left axis!, the exponent oft3, and
factor C2 ~circles, right axis! as functions ofL/ l s for superlattice
model. Large and small symbols correspond to dichotomic and
distribution ofd2 , respectively.
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V. CONCLUSION

In this paper we studied scaling properties of the distrib
tion function of the Lyapunov exponent for two one
dimensional disordered models: the Anderson model w
diagonal disorder, and the model of a scalar wave propa
ing in a random superlattice. The main result of the pape
that in the region of band-edge and fluctuation states, wh
simple SPS fails, the distribution function can be describ
by two independent scaling parameters: the localizat
length l loc and an additional lengthl s , introduced in Refs.
11,12, which is related to the integral density of states. I
interesting that not only the second moment of the distri
tion is described by these two parameters, but so also is
third moment. This means that even though in the region
fluctuation states the form of the distribution functio
strongly deviates from the Gaussian, it still can be descri
within the suggested two-parameter scaling approach.

Among the other results of the paper we would like
note the detailed study of the properties of the variance
the third moment of LE in the region of fluctuation state
We showed that both, the normalized variance and the t
cumulant presented by the scaling functionst andt3, dem-
onstrate a power law dependence upon the scaling param
k. Parameters of this power law dependence were foun
depend weakly upon the type of statistics used to charac
ize our random systems, but are different for the Anders
model and the superlattice model. When the length of
system becomes smaller thanl s , we showed that the scalin
behavior ofs2 deviates significantly from the central lim
theorem behavior even whenL remains much bigger than th
localization length.

x
FIG. 12. Normalized variance of LEt plotted versus paramete

(k2ki)/d demonstrates a good scaling. Scaling with (k2ki)/d
4/3,

predicted by the Gaussian white noise model, shown in the in
fails. The data was generated in the superlattice model with the
distribution for five values ofd50.1, 0.125, 0.15, 0.175, and 0.2
L520 000. We included the frequencies from two band edges
the upper edge of the first band and the lower edge of the sec
band. Altogether, the band gap region between the first and
second bands is covered entirely.
3-8
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