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Scaling in one-dimensional localized absorbing systems
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Numerical study of the scaling of transmission fluctuations in the one-dimensional localization problem in
the presence of absorption is carried out. Violations of single-parameter scaling for lossy systems are found and
explained on the basis of a new criterion for different types of scaling behavior derived by BegichPhys.

Rev. Lett.,84, 2678(2000].

DOI: 10.1103/PhysRevB.64.024201 PACS nuni®er71.55.Jv, 72.15.Rn, 42.25.Bs

[. INTRODUCTION phase is not randomized, provided that the disorder is weak.
Later, numerical simulations of a random, periodic-on-
The single-parameter scalii§P3 hypothesis is the cor- average mod&demonstrated a strong violation of SPS in the
nerstone of the current understanding of the localization phedand gaps of the spectrum of the underlined system without
nomena. It was originally formulated in terms of the scalingdisorder, which existed even for weak disorder and, actually
behavior of the conductance of disordered conductors,diminished, when disorder increased. This was contrary to
where it was suggested that when the lengthof a disor-  the behavior found for states from the original conducting
dered conductor increases, the evolution of the conductancband, for which minor deviations of the variance from Eq.
g(L), is determined by a single parametgiitself. For one- (1) occured when disorder becomes strong endugh.
dimensional1D) systems the Landauer’s formélkexpresses The final realization of the fact that the phase randomiza-
the electron conductance in terms of electron reflectiontion hypothesis has nothing to do with SPS came in Ref. 9.
R(L), and transmission,T(L), coefficients as g(L) In that paper, the variance of LE was calculated exactly for
=T(L)/R(L), and thereby allows considering of electron the Lloyd model and the SPS equatidn was derived with-
transport on an equal footing with, for example, propagatiorputad hocassumptions? It was found that the emergence of
of light. It was recognized later that SPS must be understoo&PS is governed by a new length scile related to the

in terms of properties of the entire distribution @for T),  integral density of states with the new criterion for SPS be-
and that the most appropriate quantity to deal with is ing k=I,,./1s>1. On the basis of the exact solutions it was
conjectured that in the region of the spectrum close to its

Y(L)=(1/2L)In[1+ Lg(L)]=(1/2L)In[ 1/T(L)]. original boundary, the parametky can be defined in a ge-

- . _ . neric case as
In the limit of largeL, this parameter is normally distributed

with the averagey=(y(L))=lim___“y(L) and the variance ls=a/N(E), 2

o?(L)=(52(L))— v2. The limiting value ofy(L) is known wherea is the lattice constant anN(E) is the number of
in the theory of products of random matriteas the States between the closest genuine boundary of the spectrum

Lyapunov exponentLE). The inverse quantity, the localiza- ©f the disordered system aiiti normalized by the total num-
tion length, ;o= L, determines the main length scale in ber of states in the bariguch that 6-N(E)<1]. It follows
the localization regimé.SPS in this context means that the from the established criterion that the violation of SPS oc-

curs in the regions of the spectrum with the depleted differ-
ential density of states. It is well knownhat these regions
correspond to fluctuation states arising outside the initial
spectrum of the system. Therefore, the deviations from SPS
o2=ylL. (1) must occur at the gap sides of initial boundaries of the spec-
trum as was observed in Ref. 8. Numerical studies under-
This expression was obtained for the one-dimensional modebken in Ref. 9 evidenced that the criterion based upon the
in Ref. 3 assuming complete randomization of the phases afefinition of | given by Eq.(2) was valid for the periodic-
complex transmission and reflection coefficients over a mion-average model with rectangular distribution of random
croscopic length scalé,,<l;,. (phase-randomization hy- parameters. An additional implication of the results of Ref. 9
pothesi$. Later the phase-randomization hypothesis wass that the random-matrix theory approach, which also repro-
used by many different authors to rederive EL. (see, for  duces Eq.(1),'**? does not apply to spectral regions with
instance, Refs. 5)6and the inequality,,<I,,. came to be depleted differential density of states.
regarded as the criterion for SPS. However, there were ear- The objective of this paper is to show that two different
lier signs that the phase-randomization hypothesis is neithascaling regimes governed by the paramétdound in Ref. 9
necessary nor sufficient condition for SPS to occur. For inexist also in disordered systems with absorption. Having in
stance, numerical simulations of Ref. 6 and analytical calcumind applications to light propagation in random photonic
lations of Ref. 7 showed that in the center of a conductivityband-gap materials, we consider how the inclusion of small
band of the 1D Anderson model, SPS holds even though thabsorption affects scaling properties of transmission. We

variance ofy is not an independent parameter, but it is de-
termined byy itself implying a simple relationship between
two quantities®

0163-1829/2001/62)/0242015)/$20.00 64 024201-1 ©2001 The American Physical Society



LEV I. DEYCH, ALEXEY YAMILOV, AND A. A. LISYANSKY PHYSICAL REVIEW B 64 024201

show that the conjectured definition &f in terms of the brake down of the phase randomization was obtained in the
integral density of states can also be applied to disorderedase of very strong disorder and strong absorption for states
systems with absorption. at the center of the original band. The results of our paper
Within the phase-randomization hypothesis approach, standicate thaf(i) violation of the generalized single-parameter
tistics of the transmission in lossy one-dimensional dielecscaling occurs at weak disorders for states close to the band
trics was considered analytically in a number of papéfé. edge of the original spectrumii] this violation is not re-
Following Ref. 13 the relation between the variance and thdated to the phase randomization but is controlled by the
localization length in the presence of absorption can be preparametet.
sented in the form

=1o(B)=1+2Be*PEi(—28), (3

wherer=c?L/y, B=1t,./l,, andl, is the absorption length
in the absence of randomness.

Il. MODEL AND THE METHOD OF CALCULATIONS

We consider a classical transverse electromagnetic wave
propagating normally through a stack of alternating dielectric
slabs with dielectric constantg and e,. The widths of the

X stacks of the first kind is distributed uniformly in the interval
(x)—f dtexpt)/t (dy—6,d,+ ) while the width of the others is being kept
constantd,. The propagation of the waves in the superlattice
is the exponential integral. In the absence of absorption, Ecgonsists of free propagation in the slabs and scattering at the
(3) reduces to the regular SPS form 1. In the two limiting  interfaces, where the boundary conditions should be satis-
cases Eq.3) gives the asymptotes=1—28In(1/8), B fied. It can be described using the transfer-matrix formalism
<1 andr=1/28, g>1. for the vectorv,=(E, ,E,/k), whereE, ,E,, are the electric

Presuming that the length scdleretains its meaning in field and its derivative atth interface andk= w/c. The pres-
the case under consideration, we expect that the parameterence of absorption can be accounted for by adding a constant
deviates from the phase-randomization hypothesis predictiooomplex part to the dielectric funCtI0n$1—6(O)(1+la)
7o(B) [EQ. (3)] in the vicinity of the boundaries of the spec- ande,= 6(20)(1+ i @), wherea is a damping coefficient. Vec-
trum in accordance with the same criterign>1s as in Ref.  tors on neighboring interfaces are connected via the transfer
9. Using numerical simulations of a periodic-on-averagematrix
one-dimensional lossy system, we show that, indeed, the pa-
rameterx=1,,./l sets a valid criterion for validity of Eq. - cosknd,  (1/kp)sinknd,

(3). As an additional benefit, we demonstrate that within the Th= —k,sink,d, cosk,d, |’ (4)
range of its validity, Eq.(3) represents a universal, model
independent relation between the variance and the mea#herek,=ky/e,. The transfer matrix of the entire system is
value of LE. The deviations from the phase- randomization-T (a,L) = Hﬁ'ilTn(a), where L=N(d;+(d,)). LE is de-
based results of Ref. 13 studied in our paper must be clearliined through the transmission coefficient for the superlat-
distinguished from results of Ref. 15. In the latter paper tice:

2> : 5

here(...) denotes the average over an ensemble of configueigenvalue of the transfer matrix appears in the denominator
rations. We find that using this definition in numerical simu-of Eq. (5), while in Eq.(6) it is in the numerator. Therefore,
lations has one significant shortcoming. In long systems, théhe contribution from absorption enters the final answer for
transmission coefficient falls bellow the computer roundoff the LE with different relative signs in these two equation.
accuracy. The usual remedy for this problem in the absenc#/e argue that Eq(6) must be modified in order to agree

2 defl(a,L)
[Tra(a,L]1+ Tofa,L)]—i[Tofa,L) = Toy(e,L)]

1
y(L,a)———(lnT(a L))= 2|_<|n

of absorption is to use an alternative definition,of with the original definition ofy as follows:
T 2
1T (L)vol[? 1/ IT(=aL)voll
(L)— In ———— (6) y(L,a)=5—{ In —————). 7
2L [1vol 2 2L [1vol|?

(v, is a generic vector which allows one to consider very 10 Show the equivalency of Eqe5) and (7) we, first, diag-
long systemé. In the presence of absorption, this definition onalize the transfer matrik (a,L):

must be generalized because the simple substitution of the eri(@)2N 0

transfer matrix, Eq.(4), in this equation would lead to a Ta L) =00 (o LYO=01 "
wrong result. The problem is that an exponentially growing (a,L)=U (a,L)U=U 0 va(@)2N U, ®
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) ] FIG. 3. 7(0) (rhombusek 7(8) (open circleg and7y(8) (solid
FIG. 1. Open-circles depict the parametg) computed for |ine) on the band edge plotted as a function of frequency for the
the periodic-on-average system of 100 000 layers far from the band,; e set of parameters as in Fig. 2.

edge. 0.86:k<<1.4, the disorder parameterds- 0.45, the damping

=0.001 25. The solid line sho iven by Eq.(3).
“ we(4) 9 y Eq.3) Ill. RESULTS

here U and U are some unitary matrices. For argument In numerical simulations we used the following set of
sake, we assume that, (@)|=|v,(a)|. Next, we notice the parameters;=1.2, e,=1, and(d;)=d,=1. The disorder

following relation between eigenvalues of the transfer matrixparameterg, and the absorption rate;, were variable pa-
rameters. To calculate the momentsafwe averaged the

vi(a)=—vy(—a), 9) characteri_stic_s of systems as long as 100000 layers over
5000 realizations. The size of the stack was chosen to be at

which follows simply from the reciprocity of our system. least five times the localization length or the absorption
Indeed, propagation of the waves in the opposite-directiotength. In the ordered system the first forbidden gap lies
should be described by the matrixi’(a,L)=[T betweenk=1.456 andk=1.543. Since the localization
(—a,L)]"%, that leads to Eq.(9). Now, substituting !ength depends on the frequency of the wave, itis possible to
T(®)(q,L) into Egs.(5) and(7) (corrections due to matrices study the funCt'OW('B(w)). by changing 'the frequency.. First,
- ~t o . e ) we compare our numerical results with the analytical for-
U andU" are negligible in the limitN—) one obtains 5 of Ref. 13 in the region of frequencies well inside the
¥(L,a)=—w;(a) andy(L,a)=v,(«), respectively. Along st aliowed band, where we expect these results to coincide.
with Eq. (9) this shows that these equations lead to the SaMigure 1 shows excellent agreement between the computed
value of LE. To make sure that the statisticsydf.,a) given 7(B) for 0.86<k<1.4 and Eq(3).
by both equations are also the same, we calculated numeri-"1hea |ocalization length decreases rapidly when the fre-
cally distribution functions fory(L,a) using both Eqgs(5) quency approaches the band edge, while LE, consequently,

and(_?) for relatively short systemﬁsych that Eq(5) is stil increases. As follows from Ed1), in the absence of absorp-
applicablg and found that they are identical. tion, o should follow the LE. Figure 2 depicts the depen-
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FIG. 2. The Lyapunov exponent and its variancer in the FIG. 4. Length scales for the system with parameters used in
vicinity of the first band gap is plotted against the frequency. TheFig. 2. The solid line depictk;, the dashed line is the localization
disorder parameter i8=0.25, absorption igr=0.0025. length,l,,., and the dotted line is the absorption lendth,

024201-3



LEV |. DEYCH, ALEXEY YAMILOV, AND A. A. LISYANSKY PHYSICAL REVIEW B 64 024201

1.20 1.20
o T(B=0) AV ¥ 3 %g
<5
LOOF o (p) & FEY 1.00
T &
0.80 & ® > 0.30} &
o
0.60 0.60 | g %
e £
040} 0.40 Z
0.20 B> s 020}
0.00 : * !
0.00 t— . : : :
107 10! 10° 10" 10° 2 1 0 1 2
. k
FIG. 5. 7(0) (rhombusek 7(8) (open circle ando(8) (solid _ FIG. 6. 7(0) (rhomb_use)s 7(B) (open circley andry(B) (solid _
line) on the band edge plotted as a functionsof |y, /1 for the line) plotted as a function of frequency averaged over 1000 realiza-
same set of parameters as in Fig. 2. tions. The length of the system 10 000 cells, disorder parandeter

=0.25, dampingx=0.0025.

dence of LE and its variance with and without absorption. As, jar to make this more transparent, we plot variots
one can see, at the band edge;1.456, SPS breaks down. versusk=1,../l, in Fig. 5. ’

Indeed, while LE grows with the increasing frequency, the Without ?;\CbS(S)rption we see the crossover to SPS in its
variance drops in both cases, with and without absorption. ) ..o orm atc=1 repo'rted in Refs. 8 and 9. When absorp-
In order to compare numerical and analytical results in thej - s present, the crossover still occursaat 1, but now to

presence of absorption, we calculated the parame®s a o modified SPS behavian(B). We stress that the cross-
function of frequencyk, using the data presented in Fig. 2. over occurs whilea<I,,.<L anda<l,<L so that the sys-
€&m remains in the meaningful scaling regime. This demon-
strates that the condition<dx establishes the criterion for
Yodified SPS even in the presence of the absorption.

that the computed(3) deviates fromry(3) that represents
Eq. (3), and that this deviation occurs at the same frequenc
at which 7(0) deviates from unity. These graphs convinc-

. . . To check that our results are not model specific we also
ingly demonstrate, that even in the presence of abso_rptlo_ udied the Anderson model, with absorption introduced as a
the spectrum of the system is separated in groups with dif- !

nonrandom imaginary part of the on-site random energy. In

ferent sca!ing properties, and that the boundqry between th[ﬁe Anderson model without disorder and absorption, there is
groups coincide with the boundary of the original spectrum., single allowed band forE=—2 to E=2

The next question we need to address is whether the tran- Figure 6 shows that(3) deviates fromro(B) at the

sition b?tvtvetehn tthe sqatlln% reg(ljrr_lesRlsfggv;rned dby t?etza;ngdges of the allowed band as would be expected on the basis
parametel that was introduced in Ret. 8. According {0 that ¢ 1hq regyits presented for the periodic-on-average system.

II%nside the conductivity band, numerical and analytical results
: - ; how excellent agreement. This is interesting in itself, since
from SPS. Using definition df; suggested in Ref. 9 regard- Eq. (3) was derived for a continuous modéland we see

ing the integrated_density of states, in Ef), we nu_mer_i- that in the SPS regime it holds also for the tight-binding
cally calculated this parameter for the system studied in th%iscrete model

present paper. The density of states was calculated using the In conclusion, we computed the Lyapunov exponent and

phase formahsr_r(see,.for instance, Ref.)Jor the system its variance for a periodic-on-average layered system and for
without absorp_tlon_. Figure 4 shows _aII relevant length P3the one-dimensional Anderson model. We studied the devia-
rameters: localization length, absorption length, &nd tion from the absorption-modified SPS expression for the

At the band edgd,s grows rapidly because very few new 5ancel3 e showed that the new length scale, introduced
states appear within the former band gap, &{&) must i, Ref. 9 in order to explain violation of SPS in the systems
already be close to unity at the band edge. It reaches unity @fithout absorption, retains its significance when absorption
a new fluctuation boundary of the spectrum near the centgy present. We also showed that the same criterion

of the gap. We assume that the disorder is not very stron@.| = | =1 derived for lossless systems in Ref. 9 controls
such that the fluctuation boundaries inside former band gap§caling behavior in lossy systems.

exist. If the disorder is strong enough, or if its statistical
properties are such that the entire band gap is filled with
fluctuation states a definition df is still possible, but the
situation becomes more complicated, and we do not consider We are indebted to A. Genack for reading and comment-
it here. At certain point$g grows larger than the localization ing on the manuscript. This work was partially supported by
lengthl,,., and one can find comparing Figs. 3 and 4, thatNATO Linkage Grant No. N974573, CUNY Collaborative
7(B) starts deviating fromrg(B) at the same frequency. In Grant, and PSC-CUNY Research Award.
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