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Scaling in one-dimensional localized absorbing systems
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Numerical study of the scaling of transmission fluctuations in the one-dimensional localization problem in
the presence of absorption is carried out. Violations of single-parameter scaling for lossy systems are found and
explained on the basis of a new criterion for different types of scaling behavior derived by Deychet al. @Phys.
Rev. Lett.,84, 2678~2000!#.
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I. INTRODUCTION

The single-parameter scaling~SPS! hypothesis is the cor
nerstone of the current understanding of the localization p
nomena. It was originally formulated in terms of the scali
behavior of the conductance of disordered conducto1

where it was suggested that when the length,L, of a disor-
dered conductor increases, the evolution of the conducta
g(L), is determined by a single parameter,g itself. For one-
dimensional~1D! systems the Landauer’s formula2 expresses
the electron conductance in terms of electron reflecti
R(L), and transmission,T(L), coefficients as g(L)
5T(L)/R(L), and thereby allows considering of electro
transport on an equal footing with, for example, propagat
of light. It was recognized later that SPS must be underst
in terms of properties of the entire distribution ofg ~or T),
and that the most appropriate quantity to deal with is3

g̃~L !5~1/2L !ln@111/g~L !#5~1/2L !ln@1/T~L !#.

In the limit of largeL, this parameter is normally distribute
with the averageg5^g̃(L)&5 lim

L→`
g̃(L) and the variance

s2(L)5^g̃2(L)&2g2. The limiting value ofg̃(L) is known
in the theory of products of random matrices4 as the
Lyapunov exponent~LE!. The inverse quantity, the localiza
tion length, l loc5g21, determines the main length scale
the localization regime.5 SPS in this context means that th
variance ofg̃ is not an independent parameter, but it is d
termined byg itself implying a simple relationship betwee
two quantities:3

s25g/L. ~1!

This expression was obtained for the one-dimensional mo
in Ref. 3 assuming complete randomization of the phase
complex transmission and reflection coefficients over a
croscopic length scalel ph! l loc ~phase-randomization hy
pothesis!. Later the phase-randomization hypothesis w
used by many different authors to rederive Eq.~1! ~see, for
instance, Refs. 5,6!, and the inequalityl ph! l loc came to be
regarded as the criterion for SPS. However, there were
lier signs that the phase-randomization hypothesis is nei
necessary nor sufficient condition for SPS to occur. For
stance, numerical simulations of Ref. 6 and analytical ca
lations of Ref. 7 showed that in the center of a conductiv
band of the 1D Anderson model, SPS holds even though
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phase is not randomized, provided that the disorder is we
Later, numerical simulations of a random, periodic-o
average model8 demonstrated a strong violation of SPS in t
band gaps of the spectrum of the underlined system with
disorder, which existed even for weak disorder and, actu
diminished, when disorder increased. This was contrary
the behavior found for states from the original conducti
band, for which minor deviations of the variance from E
~1! occured when disorder becomes strong enough.6

The final realization of the fact that the phase randomi
tion hypothesis has nothing to do with SPS came in Ref
In that paper, the variance of LE was calculated exactly
the Lloyd model and the SPS equation~1! was derived with-
out ad hocassumptions.10 It was found that the emergence o
SPS is governed by a new length scalel s , related to the
integral density of states with the new criterion for SPS b
ing k5 l loc / l s@1. On the basis of the exact solutions it w
conjectured9 that in the region of the spectrum close to
original boundary, the parameterl s can be defined in a ge
neric case as

l s5a/N~E!, ~2!

wherea is the lattice constant andN(E) is the number of
states between the closest genuine boundary of the spec
of the disordered system andE, normalized by the total num
ber of states in the band@such that 0,N(E),1#. It follows
from the established criterion that the violation of SPS o
curs in the regions of the spectrum with the depleted diff
ential density of states. It is well known5 that these regions
correspond to fluctuation states arising outside the ini
spectrum of the system. Therefore, the deviations from S
must occur at the gap sides of initial boundaries of the sp
trum as was observed in Ref. 8. Numerical studies und
taken in Ref. 9 evidenced that the criterion based upon
definition of l s given by Eq.~2! was valid for the periodic-
on-average model with rectangular distribution of rando
parameters. An additional implication of the results of Ref
is that the random-matrix theory approach, which also rep
duces Eq.~1!,11,12 does not apply to spectral regions wi
depleted differential density of states.

The objective of this paper is to show that two differe
scaling regimes governed by the parameterl s found in Ref. 9
exist also in disordered systems with absorption. Having
mind applications to light propagation in random photon
band-gap materials, we consider how the inclusion of sm
absorption affects scaling properties of transmission.
©2001 The American Physical Society01-1
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show that the conjectured definition ofl s in terms of the
integral density of states can also be applied to disorde
systems with absorption.

Within the phase-randomization hypothesis approach,
tistics of the transmission in lossy one-dimensional diel
trics was considered analytically in a number of papers.13,14

Following Ref. 13 the relation between the variance and
localization length in the presence of absorption can be
sented in the form

t5t0~b!5112be2bEi~22b!, ~3!

wheret5s2L/g, b5 ł loc / l a , andl a is the absorption length
in the absence of randomness.

Ei~x!5E
2`

x

dt exp~ t !/t

is the exponential integral. In the absence of absorption,
~3! reduces to the regular SPS formt51. In the two limiting
cases Eq.~3! gives the asymptotest5122b ln(1/b), b
!1 andt51/2b, b@1.

Presuming that the length scalel s retains its meaning in
the case under consideration, we expect that the paramet
deviates from the phase-randomization hypothesis predic
t0(b) @Eq. ~3!# in the vicinity of the boundaries of the spe
trum in accordance with the same criterionl loc@ l s as in Ref.
9. Using numerical simulations of a periodic-on-avera
one-dimensional lossy system, we show that, indeed, the
rameterk5 l loc / l s sets a valid criterion for validity of Eq
~3!. As an additional benefit, we demonstrate that within
range of its validity, Eq.~3! represents a universal, mod
independent relation between the variance and the m
value of LE. The deviations from the phase-randomizati
based results of Ref. 13 studied in our paper must be cle
distinguished from results of Ref. 15. In the latter pap
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brake down of the phase randomization was obtained in
case of very strong disorder and strong absorption for st
at the center of the original band. The results of our pa
indicate that~i! violation of the generalized single-paramet
scaling occurs at weak disorders for states close to the b
edge of the original spectrum, (i i ) this violation is not re-
lated to the phase randomization but is controlled by
parameterl s .

II. MODEL AND THE METHOD OF CALCULATIONS

We consider a classical transverse electromagnetic w
propagating normally through a stack of alternating dielec
slabs with dielectric constantse1 ande2. The widths of the
stacks of the first kind is distributed uniformly in the interv
(d12d,d11d) while the width of the others is being kep
constant,d2. The propagation of the waves in the superlatt
consists of free propagation in the slabs and scattering a
interfaces, where the boundary conditions should be sa
fied. It can be described using the transfer-matrix formali
for the vectorvn5(En ,En8/k), whereEn ,En8 are the electric
field and its derivative atnth interface andk5v/c. The pres-
ence of absorption can be accounted for by adding a cons
complex part to the dielectric functions:e15e1

(0)(11 ia)
ande25e2

(0)(11 ia), wherea is a damping coefficient. Vec
tors on neighboring interfaces are connected via the tran
matrix

T̂n5S coskndn ~1/kn!sinkndn

2knsinkndn coskndn
D , ~4!

wherekn5kAen. The transfer matrix of the entire system
T̂(a,L)5Pn51

2N T̂n(a), where L5N(d11^d2&). LE is de-
fined through the transmission coefficient for the super
tice:
g~L,a!52
1

2L
^ lnT~a,L !&52

1

2LK lnU 2 detT̂~a,L !

@ T̂11~a,L#1T̂22~a,L !#2 i @ T̂12~a,L !2T̂21~a,L !#
U2L , ~5!
ator
,
for
n.
e

here^ . . . & denotes the average over an ensemble of confi
rations. We find that using this definition in numerical sim
lations has one significant shortcoming. In long systems,
transmission coefficientT falls bellow the computer roundof
accuracy. The usual remedy for this problem in the abse
of absorption is to use an alternative definition ofg,

g~L !5
1

2L K ln
uuT̂~L !v0uu2

uuv0uu2 L ~6!

(v0 is a generic vector!, which allows one to consider ver
long systems.4 In the presence of absorption, this definitio
must be generalized because the simple substitution of
transfer matrix, Eq.~4!, in this equation would lead to a
wrong result. The problem is that an exponentially growi
u-
-
e

ce

he

eigenvalue of the transfer matrix appears in the denomin
of Eq. ~5!, while in Eq.~6! it is in the numerator. Therefore
the contribution from absorption enters the final answer
the LE with different relative signs in these two equatio
We argue that Eq.~6! must be modified in order to agre
with the original definition ofg as follows:

g~L,a!5
1

2L K ln
uuT̂~2a,L !v0uu2

uuv0uu2 L . ~7!

To show the equivalency of Eqs.~5! and ~7! we, first, diag-
onalize the transfer matrixT̂(a,L):

T̂~a,L !5Û†T̂(D)~a,L !Û5Û†S en1(a)2N 0

0 en2(a)2ND Û, ~8!
1-2
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here Û and Û† are some unitary matrices. For argume
sake, we assume thatun1(a)u>un2(a)u. Next, we notice the
following relation between eigenvalues of the transfer ma

n1~a!52n2~2a!, ~9!

which follows simply from the reciprocity of our system
Indeed, propagation of the waves in the opposite-direc
should be described by the matrixT̂8(a,L)5@ T̂
(2a,L)#21, that leads to Eq.~9!. Now, substituting
T̂(D)(a,L) into Eqs.~5! and~7! ~corrections due to matrice
Û and Û† are negligible in the limitN→`) one obtains
g(L,a)52n2(a) andg(L,a)5n1(a), respectively. Along
with Eq. ~9! this shows that these equations lead to the sa
value of LE. To make sure that the statistics ofg(L,a) given
by both equations are also the same, we calculated num
cally distribution functions forg(L,a) using both Eqs.~5!
and~7! for relatively short systems@such that Eq.~5! is still
applicable# and found that they are identical.

FIG. 1. Open-circles depict the parametert(b) computed for
the periodic-on-average system of 100 000 layers far from the b
edge. 0.86,k,1.4, the disorder parameter isd50.45, the damping
a50.001 25. The solid line showst0(b) given by Eq.~3!.

FIG. 2. The Lyapunov exponentg and its variances in the
vicinity of the first band gap is plotted against the frequency. T
disorder parameter isd50.25, absorption isa50.0025.
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III. RESULTS

In numerical simulations we used the following set
parameterse151.2, e251, and^d1&5d251. The disorder
parameter,d, and the absorption rate,a, were variable pa-
rameters. To calculate the moments ofg, we averaged the
characteristics of systems as long as 100 000 layers
5000 realizations. The size of the stack was chosen to b
least five times the localization length or the absorpt
length. In the ordered system the first forbidden gap l
between k51.456 and k51.543. Since the localization
length depends on the frequency of the wave, it is possibl
study the functiont„b(v)… by changing the frequency. Firs
we compare our numerical results with the analytical f
mula of Ref. 13 in the region of frequencies well inside t
first allowed band, where we expect these results to coinc
Figure 1 shows excellent agreement between the comp
t(b) for 0.86,k,1.4 and Eq.~3!.

The localization length decreases rapidly when the f
quency approaches the band edge, while LE, conseque
increases. As follows from Eq.~1!, in the absence of absorp
tion, s2 should follow the LE. Figure 2 depicts the depe

nd

e

FIG. 3. t(0) ~rhombuses!, t(b) ~open circles!, andt0(b) ~solid
line! on the band edge plotted as a function of frequency for
same set of parameters as in Fig. 2.

FIG. 4. Length scales for the system with parameters use
Fig. 2. The solid line depictsl s , the dashed line is the localizatio
length, l loc , and the dotted line is the absorption length,l a .
1-3
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dence of LE and its variance with and without absorption.
one can see, at the band edge,k51.456, SPS breaks down
Indeed, while LE grows with the increasing frequency, t
variance drops in both cases, with and without absorptio

In order to compare numerical and analytical results in
presence of absorption, we calculated the parametert as a
function of frequencyk, using the data presented in Fig.
The results are presented in Fig. 3, from which one can
that the computedt(b) deviates fromt0(b) that represents
Eq. ~3!, and that this deviation occurs at the same freque
at which t(0) deviates from unity. These graphs convin
ingly demonstrate, that even in the presence of absorp
the spectrum of the system is separated in groups with
ferent scaling properties, and that the boundary between
groups coincide with the boundary of the original spectru

The next question we need to address is whether the t
sition between the scaling regimes is governed by the s
parameterl s that was introduced in Ref. 9. According to th
paper, the new parameterl s becomes greater than the loca
ization length at the band edge, which results in a devia
from SPS. Using definition ofl s suggested in Ref. 9 regard
ing the integrated density of states, in Eq.~2!, we numeri-
cally calculated this parameter for the system studied in
present paper. The density of states was calculated usin
phase formalism~see, for instance, Ref. 5! for the system
without absorption. Figure 4 shows all relevant length p
rameters: localization length, absorption length, andl s .

At the band edge,l s grows rapidly because very few ne
states appear within the former band gap, andN(E) must
already be close to unity at the band edge. It reaches uni
a new fluctuation boundary of the spectrum near the ce
of the gap. We assume that the disorder is not very str
such that the fluctuation boundaries inside former band g
exist. If the disorder is strong enough, or if its statistic
properties are such that the entire band gap is filled w
fluctuation states a definition ofl s is still possible, but the
situation becomes more complicated, and we do not cons
it here. At certain pointsl s grows larger than the localizatio
length l loc , and one can find comparing Figs. 3 and 4, th
t(b) starts deviating fromt0(b) at the same frequency. I

FIG. 5. t(0) ~rhombuses!, t(b) ~open circles!, andt0(b) ~solid
line! on the band edge plotted as a function ofk5 l loc / l s for the
same set of parameters as in Fig. 2.
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order to make this more transparent, we plot varioust ’s
versusk5 l loc / l s in Fig. 5.

Without absorption, we see the crossover to SPS in
pure form atk.1 reported in Refs. 8 and 9. When absor
tion is present, the crossover still occurs atk.1, but now to
the modified SPS behaviort0(b). We stress that the cross
over occurs whilea! l loc!L anda! l a!L so that the sys-
tem remains in the meaningful scaling regime. This dem
strates that the condition 1!k establishes the criterion fo
modified SPS even in the presence of the absorption.

To check that our results are not model specific we a
studied the Anderson model, with absorption introduced a
nonrandom imaginary part of the on-site random energy
the Anderson model without disorder and absorption, ther
a single allowed band formE522 to E52.

Figure 6 shows thatt(b) deviates fromt0(b) at the
edges of the allowed band as would be expected on the b
of the results presented for the periodic-on-average sys
Inside the conductivity band, numerical and analytical resu
show excellent agreement. This is interesting in itself, sin
Eq. ~3! was derived for a continuous model,13 and we see
that in the SPS regime it holds also for the tight-bindi
discrete model.

In conclusion, we computed the Lyapunov exponent a
its variance for a periodic-on-average layered system and
the one-dimensional Anderson model. We studied the de
tion from the absorption-modified SPS expression for
variance.13 We showed that the new length scale, introduc
in Ref. 9 in order to explain violation of SPS in the system
without absorption, retains its significance when absorpt
is present. We also showed that the same criterionk
5 l loc / l s@1 derived for lossless systems in Ref. 9 contro
scaling behavior in lossy systems.
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FIG. 6. t(0) ~rhombuses!, t(b) ~open circles!, andt0(b) ~solid
line! plotted as a function of frequency averaged over 1000 real
tions. The length of the system 10 000 cells, disorder parametd
50.25, dampinga50.0025.
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