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Local polariton modes and resonant tunneling of electromagnetic waves through periodic
Bragg multiple quantum well structures
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We study analytically defect polariton states in Bragg multiple quantum well structures and defect-induced
changes in transmission and reflection spectra. Defect layers can differ from the host layers in three ways:
exciton-light coupling strength, exciton resonance frequency, and interwell spacing. We show that a single
defect leads to two local polariton modes in the photonic band gap. These modes cause peculiarities in
reflection and transmission spectra. Each type of defect can be reproduced experimentally, and we show that
each of these plays a distinct role in the optical properties of the system. For some defects, we predict a narrow
transmission window in the forbidden gap at the frequency set by parameters of the defect. We obtain analyti-
cal expressions for corresponding local frequencies as well as for reflection and transmission coefficients. We
show that the presence of the defects leads to resonant tunneling of the electromagnetic waves via local
polariton modes accompanied by resonant enhancement of the field inside the sample, even when a realistic
absorption is taken into account. On the basis of the results obtained, we make recommendations regarding the
experimental observation of the effects studied in readily available samples.
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I. INTRODUCTION

Optical properties of multiple quantum wells~MQW!
have attracted a great deal of interest recently.1–8 Unlike
other types of superlattices, excitons in MQW are confined
the planes of the respective wells, which are separated
relatively thick barriers. Therefore, the only coupling b
tween different wells is provided by the radiative optic
field. The coupling results in MQW polaritons—coheren
coupled quasistationary excitations of quantum well~QW!
excitons and transverse electromagnetic field. The spec
of short MQW structures consists of a number of quasis
tionary ~radiative! modes with finite lifetimes. This spectrum
is conveniently described in terms of super- or sub-rad
modes.1,3,4When the number of wells in the structure grow
the lifetime of the former decreases, and the lifetime of
latter increases. In longer MQW structures, however, t
approach becomes misleading, as discussed in Ref. 9, a
more appropriate description is obtained in terms of stati
ary modes of an infinite periodic structure. The spectrum
MQW polaritons in this case consists of two branches se
rated by a gap with a width proportional to the exciton-lig
coupling constantG.1,3 The length at which this descriptio
becomes preferable usually depends upon a problem at h
For instance, even though the discrete structure of the su
diant modes of 100 long MQW in Refs. 5,8 could be r
solved, the description of the gap region in terms of
superradiant mode leads to an apparent contradiction
the absence of significant luminescence in this region. If
is interested in properties of the gap region, a ‘‘long syste
usually means that it is longer than the penetration length
radiation into the sample. The latter length depends upon
frequency, therefore the system can be long enough for
quencies close to the center of the gap, and still ‘‘short’’
frequencies in the vicinity of the band edges. Systems sim
0163-1829/2001/64~7!/075321~13!/$20.00 64 0753
n
by

l

m
-

t
,
e
is
d a
-
f

a-
t

nd.
ra-
-
e
th
e
’’
of
he
e-
r
ar

to those studied in Ref. 8 can be considered sufficiently lo
for 90% of the gap region when the number of wells b
comes close to 200.

In a number of papers2,5,7,8it was shown that the width o
the polariton band gap can be significantly increased by t
ing the interwell spacinga to the Bragg condition,a5l0/2,
wherel0 is the wavelength of the light at the exciton fre
quencyV0. Under this condition, boundaries of two adjace
gaps become degenerate, and one wider gap with the w
proportional toAGV0 is formed. Detuning of the lattice con
stant from the exact Bragg condition removes the degene
and gives rise to a conduction band in the center of the Br
gap.9 A well-pronounced Bragg polariton gap was observ
in recent experiments8 with InxGa12xAs/GaAs Bragg struc-
tures with the number of wells up to 100. These experime
convincingly demonstrate that despite homogeneous and
homogeneous broadening, the coherent exciton-photon
pling in long MQW is experimentally feasible. Polariton e
fects arising as a result of this coupling open up n
opportunities for manipulating optical properties of quantu
heterostructures.

One such opportunity is associated with introducing d
fects in MQW structures. These defects can be either Q
of different compositions replacing one or several ‘‘hos
wells, or locally altered spacing between elements of
structure. It is well known in the physics of regular crysta
~see, for instance, Ref. 10! that local violations of otherwise
periodic structures can lead to the appearance of local mo
with frequencies within spectral gaps of host structures. T
idea was first applied to MQW in Ref. 11, where it wa
shown that different defects can indeed give rise to lo
exciton-polariton modes in infinite MQW. Unlike regular lo
cal modes in 3-d periodic structures, these modes are loc
ized only in the growth direction of the MQW, while the
can propagate along the planes of the wells. Therefore,
©2001 The American Physical Society21-1
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should clearly distinguish these defect polariton modes fr
well-known interface modes in layered systems or nonra
tive two-dimensional polariton modes in ideal MQW.12–14

The latter exist only with the in-plane wave-numberskuu ex-
ceeding certain critical values, while the local mode in
defect MQW structure exists atkuu50 and can be excited
even at normal incidence.

In this paper, we present results of detailed studies
local polariton modes~LPM’s! produced by four different
types of individual defects in Bragg MQW structures. T
peculiar structure of Bragg MQW’s results in a wider th
the usual polariton gap, which is actually formed by tw
gaps with degenerate boundaries. This property has a
found effect on the properties of local modes, leading,
instance, to the emergence of two local states from a sin
defect. The similar effects of doubling the number of loc
modes was also predicted in the case of braggoriton
excitations arising inside photonic band gaps of perio
structures made of a dispersive material, if the resona
frequency of the dielectric functions happens to belong to
gap.15

We neglect in-plane disorder in individual QW’s, and a
sume that apart from a deliberately introduced single def
the structure remains ideally periodic. We consider LPM
with zero in-plane wave vector only. Such modes can
excited by light incident in the growth direction of the stru
ture, and can result in the resonance transmission of l
with gap frequencies. This effect is studied both analytica
and numerically with the nonradiative decay taken into
count phenomenologically. The rate of the nonradiative
cay may include contributions from homogeneous, as we
from nonhomogeneous broadening; such an approach
shown in Ref. 16 to give a good description of high qual
MQW structures. Equations describing the dynamics of
light-exciton interaction in this situation are essentia
equivalent to a model of the one-dimensional chain of
poles used in the series of our previous works where LP
in polar crystals were discussed.17–19 Similar equations also
appear in the theory of atomic optical lattices.20 The essential
difference between results presented in this paper and p
ous studies stems from the peculiarities of the Bragg arran
ment. Using Green’s function and transfer-matrix form
isms, we study both eigenfrequencies of LPM’s for differe
types of defects and transmission properties of the de
structures. Using parameters of the system studied exp
mentally in Ref. 8, we predict which defects will produce t
most significant changes in transmission and reflection p
erties of realistic MQW structures.

II. DEFECT MODES IN BRAGG MQW

In order to describe optical properties of QW’s one has
take into account the coupling between retarded electrom
netic waves and excitons. This is usually done with the
of the nonlocal susceptibility determined by energies a
wave functions of a QW exciton.1,14 The treatment of the
exciton subsystem can be significantly simplified if the int
well spacing is much larger than the size of a well itself.
InxGa12xAs/GaAs MQW structures studied in Ref. 8, o
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which we base our numerical examples, the width of the Q
layer amounts only to about 10% of the period of the str
ture. In this case, one can neglect the overlap of the exc
wave functions from neighboring wells and assume that
interaction between well excitons occurs only due to co
pling to the light. It is also important that the width of th
wells is also considerably smaller than the exciton’s Bo
radius, and, therefore, one can neglect spatial extent of
wells, and describe them with polarization density of t
form: P(r ,z)5Pn(r )d(z2zn), wherer is an in-plane posi-
tion vector,zn represents a coordinate of thenth well, andPn
is a surface polarization density of the respective well. Op
cal response of the system even in the presence of inho
geneous broadening is successfully described by the lin
dispersion theory~see, for instance, Ref. 16! based upon a
single oscillator phenomenological expression for the ex
ton susceptibility

x5
d2

V0
22v222ignrv

, ~1!

whereV0 and gnr are 1s exciton frequency and relaxatio
parameter, respectively,d is a parameter describing the ligh
exciton coupling. For our purposes, however, it is more c
vienient to consider explicitly equations of exciton dynam
coupled with Maxwell equations for the electromagne
field. In the case of waves propagating along the grow
direction of the structure, which is considered in the pres
paper, only excitons with the zero in-plane wave number
coupled to light, and the equations of motion can be p
sented in the form:

~Vn
22v222ignrv!Pn5

1

p
cGnE~zn!, ~2!

v2

c2
E~z!1

d2E~z!

dz2
524p

v2

c2 (
n

Pnd~z2zn!, ~3!

where Vn is the exciton frequency of thenth QW. The
strength of the exciton-photon coupling in Eq.~2! is de-
scribed by the parameterGn equal to the radiative decay rat
of a singlenth well. This parameter is related to the param
eterd of Eq. ~1! according tod25(cG)/(pw), wherew char-
acterizes the spatial extent of exciton wave functions in
growth direction~we assumed it to be zero when we d
scribed the exciton polarization by thed function!. In what
follows, we refer toGn as to a coupling parameter. The rel
tion of Gn to the radiative lifetime can be established, f
instance, if one uses Eqs.~2! and~3! to obtain the reflection
coefficient for a singlenth QW r n ,

r n5
2ivGn

V0
22v222iv~gnr1Gn!

'
iGn

V02v2 i ~gnr1Gn!
,

~4!

which in the resonance approximation@the last expression in
Eq. ~4!# coincides with the standard linear dispersion theo
expression used in Refs. 2, 8, and others.
1-2
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LOCAL POLARITON MODES AND RESONANT . . . PHYSICAL REVIEW B 64 075321
In an infinite pure system, allGn5G0 , Vn5V0 , zn5na,
wherea5l0/2 is the Bragg’s interwell separation. Equatio
~3! describes an electromagnetic wave of one of the deg
erate transverse polarizations, propagating in the growth
rection of the structure. This equation coincides with eq
tions used in Refs. 17–20 for one-dimensional chains
atoms. The spectrum of ideal periodic MQW’s with a hom
geneous broadening parametergnr50 has been studied in
many papers.1,3,9,20–22In the specific case of Bragg struc
tures, the exciton resonance frequencyV0 is at the center of
the band gap determined by the inequalityv l,v,vu ,
where v l5V0(12A2G0 /pV0) and vu5V0(1
1A2G0 /pV0).9 In the formed band gap, the electroma
netic waves decay with the penetration~localization! length,

l loc
215a21 lnS cos~k0a!1

b

2
sin~k0a!

2AFcos~k0a!1
b

2
sin~k0a!G2

21D , ~5!

wherek05v/c and

b5
4G0v

v22V0
2

. ~6!

Parameterb is proportional to the susceptibility of the we
in the absence of exciton relaxation Eq.~1! and is the main
quantity used in our theory to characterize the optical
sponse of the single well. The homogeneous broadening
be taken into account by adding 2ignrv in the denominator
of Eq. ~6!; we, however, neglect it until the last section of t
paper, where transmission and reflection spectra of de
MQW structures are discussed.

As it was mentioned earlier, for structures that are lon
than the penetration lengthl loc for most of the band gap
consideration based upon modes of the infinite perio
structure is more appropriate. Using Eq.~5! one can show
that in the case of 140~for GaAs/AlxGa12xAs) or 200~for
InxGa12xAs/GaAs) wells long, MQW’s of the type consid
ered in Refs. 5,8,l loc.Na for 90% of the band gap of the
infinite structure characterized by the boundariesv l andvp .
This band gap is the frequency region where we look for n
local states associated with the defects. In this paper,
consider four types of such defects. First of all, one c
replace an original QW with a QW with different excito
frequency (V defect!. This can be experimentally achieve
by varying the composition of the semiconductor in the we
Another possibility is to change the coupling constantG
defect! at one of the wells. Even though an experimen
realization of this defect in its pure form is not straightfo
ward, it is still methodologically important to consider su
an idealized situation in order to be able to estimate h
changes inG could effect optical properties of the system
with real defects. The third possibility is to perturb an inte
well spacing between two wells. Here we distinguish tw
defects, which we calla andb defects. The former is realize
when the interwell spacing between a pair of wells
07532
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changed@Fig. 1~a!#. It can be seen that this induces a shift
the position of all wells that follow the defect, making
significantly nonlocal. Theb defect is produced when on
shifts just one well keeping positions of the rest unchang
@Fig. 1~b!#. Experimental realizations of these two defects
simple and can be done at the sample growth stage. In
following section, we show that each of these types affe
the optical properties of the MQW lattice in remarkably d
ferent ways.

We start withV and G defects, which are similar in a
sense that they both introduce perturbations in the equa
of motion, Eq.~2!, which are localized at one site~the diag-
onal disorder!. Therefore, they can be studied by the usu
Green’s function technique like the one used to treat the
calized phonon states in impure crystals~see, for instance
Ref. 10!. Using the polarization Green’s function defined in
standard way by addingdn,n0

to Eq. ~2!, we can express the

polarization of thenth QW in terms of the polarization of the
defect QW,Pn0

as

Pn5G~n2n0!Pn0
.

@see details of the derivation, as well as an expression
G(n2n0) in Ref. 18#. Allowing n5n0, and using expression
for the Green function from Ref. 18 one obtains the equat
for eigenfrequencies of LPM:

F
V,G

5

b

2
sin~k0a!

AFcos~k0a!1
b

2
sin~k0a!G2

21

, ~7!

where the functionF
V

5(V1
22v2)/(V1

22V0
2) corresponds

to theV defect and the functionF
G
5G0 /(G12G0) describes

theG defect;V1 andG1 denote respective parameters of t
defect layer. Equation~7! is an exact consequence of Eqs.~2!
and~3!, and was first derived in Ref. 17 for theV defect. It
has been studied in that paper in the long-wave approxi

FIG. 1. Two types of interwell spacing defects. The nonlocaa
defect~a! as opposed to the localb defect~b!. Solid bars represen
locations of QW’s in the defect lattice. The empty bars repres
what would have been a perfectly ordered MQW lattice.
1-3
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tion; it was found that the equation had one real valued
lution for anyV1.V0. We find that in the case of the Brag
structures, there are always two solutions for both types
defects, one belowV0 and one above. This is a manifestatio
of the fact that the band gap consists of two gaps positio
one right after the other. The above equations can be so
approximately whenG0!V0, which is the case for mos
materials. For theV defect, one solution demonstrates a
diative shift from the defect frequencyV1,

vde f
(1) 5V12G0

V12V0

A~vu2V1!~V12v l !
, ~8!

while the second solution splits off the upper or low
boundary depending upon the sign ofV12V0:

vde f
(2) 5vu,l6

1

2
~vu2v l !S p

2

V12V0

V0
D 2

, ~9!

where one choosesvu and ‘‘2 ’’ for V1,V0, and v l and
‘‘ 1’’ in the opposite case. This is illustrated in Fig. 2~a!. It
can be seen that the shift ofvde f

(1) from the defect exciton
frequencyV1 is negative forV1.V0 and positive forV1
,V0. The magnitude of the shift is of the order of the co
pling constantG0, which is usually rather small, and th
fact, as it is shown in the next section, is crucial for t
optical properties of the defect. The second local modevde f

(2)

lies very close to the edges of the band gap, and it would
therefore, very difficult to distinguish it from the mode
making up the allowed bands even for negligible dissipati

In the case of theG defect, one again finds two solution
of Eq. ~7!:

FIG. 2. Positions of the local modes in the band gap~1.486–
1.496 eV! for the V defect ~a!, a defect ~b! and, b defect ~c! as
functions of the defect strengths. Numerical values of the exc
resonant frequency and the exciton-light coupling constant w
taken the same as in InGaAs/GaAs structures studied in Ref. 8
07532
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vde f
(1,2)5vu,l62S G12G0

V0
D 2

~vu2v l !. ~10!

which exist only for 0,G1,G0 and are very close to the ga
boundaries. The situation is similar to the second solution
the V defect, and one can conclude, therefore, that theG
defect would not affect significantly the optical spectra of t
system.

The next defect we consider, thea defect, is shown in Fig.
1~a!. One can see that this defect differs from the other t
in a fundamental way. An increase in an interwell distan
between any two wells automatically changes the coo
nates of an infinite number of wells:zn5na for n<nd and
zn5(b2a)1na for nd,n, whereb is the distance betwee
thenth and (n11)th wells. Therefore, this defect is nonloc
and cannot be solved by the same methods as the two p
ous cases. The best approach to this situation is to cons
the system of a finite lengthL and match solutions forn
,nd and n.nd11 with a solution for na,z,na1(b
2a), which is schematically shown in Fig. 3. Eigen freque
cies can be derived then considering limitL→`. Solutions
for the finite system can be constructed using the trans
matrix approach. The state of the system at themth well is
described by a two-dimensional vectorvm with components
E(xm) and (1/k0)@dE(xm)/dx#

vm5 )
n51

m

t̂nv05T̂v0 . ~11!

The 232 transfer matrixt̂n at thenth well is

t̂n5S cos~k0an!1b sin~k0an! sin~k0an!

2sin~k0an!1b cos~k0an! cos~k0an!
D , ~12!

wherean5xn112xn andb is defined by Eq.~6!. The eigen
quasistates for a finite system,nP(1,N), can be found if one
looks for nontrivial solutions when no wave is incident up
the system. This corresponds to the boundary condition
the form

v05S r

2 ir D and vN5S t

i t D .

A resulting dispersion equation for the eigenfrequencies
be expressed in terms of the elements of the total trans
matrix T̂:

n
re

FIG. 3. Matching the solutions for half-infinite perfect MQW
with cavity modesc6 one can obtain the dispersion equation f
~quasi!local modes~in finite systems! of such a system with the
defect.
1-4
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~T111T22!2 i ~T122T21!50. ~13!

It is clear that for finite samples the solutions of this equat
are complex, reflecting the fact that the modes are not
tionary; they have lifetimes that tend to infinity only in th
limit N→`.

Equation~13! for the a defect in the infinite MQW sys-
tem, after some cumbersome but straightforward algebra,
be presented in the form

cot~k0b!52
sin~k0a!2bl2/2

cos~k0a!2l2
, ~14!

wherel25@cot(k0a)1b/22AD#sin(k0a) is one of the eigen-
values of the transfer matrix, Eq.~12!, and D5211b2/4
1b cot(k0a). This equation, as well as in the cases ofG and
V defects, has two solutions—above and belowV0. These
solutions can be approximated as

vde f
(1) 5V02

vu2v l

2

~21! [ j11/2]sin~pj/2!

11
vu2v l

2V0
j~21! [ j11/2]cos~pj/2!

,

~15!

vde f
(2) 5V01

vu2v l

2

~21! [ j11/2]cos~pj/2!

12
vu2v l

2V0
j~21! [ j11/2]sin~pj/2!

,

~16!

wherej5b/a, and@ . . . # denotes an integer part. Therefor
for G0!V0 and not very largej, j!(V0/G0)1/2.102, and
both solutions are almost periodic functions ofb/a with the
period of 1, as shown in Fig. 2~b!. These solutions oscillate
between respective boundaries of the gap (vu or v l) and the
exciton frequencyV0. At the integer values ofj, one of the
frequenciesvde f

(1) or vde f
(2) becomes equal toV0, and the other

reachesvu or v l depending upon the parity ofj. When j
crosses an integer value, the solution passing throughV0
changes continuously, while the second one experienc
jump toward the opposite gap boundary. The observa
manifestations of the defect modes~for instance, transmis
sion resonances as described in the next section of this pa!
vanish when the defect frequencies approach the gap bo
aries. This jump, therefore, would manifest itself as a dis
pearance of the transmission peak near one of the gap bo
aries, and a gradual reappearance at the opposite edgej
changes through an integer value. It is interesting to n
again that the exciton resonance frequencyV0, which for-
mally lies at the center of the gap, behaves as one of the
boundaries. This is another manifestation of the fact that
polariton gap in the Bragg structures is formed by two ad
cent gaps with a degenerate boundary atV0.

Calculations of the defect frequencies for theb defect can
be done in the framework of both schemes. The trans
matrix approach, however, turns out to be less cumberso
The dispersion equation for LPM’s in this case takes
form
07532
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2
sin2@k0~b2a!#F211

b

2AD
1

cot~k0a!

2AD
G1cos2~k0a!

1sin2~k0a!S b

2
2AD D 2

1sin~2k0a!S b

2
2AD D50.

~17!

This equation can be solved approximately assuming that
splitting of the solution from the Bragg frequencyV0 is
much smaller than the width of the gap. Expanding differe
terms of Eq.~17! in terms of powers of (v2V0) and keep-
ing the lowest nonzero contribution, one obtains two diff
ent solutions for frequencies of LPM’s:

vde f
(1,2)5V0F16S 2

p D 1/4S G0

V0
D 3/4

usinp~j21!uG . ~18!

The relative splitting of these modes fromV0 is of the order
of (G0 /V0)3/4, and is much smaller than the relative width
the gap, which is proportional to (G0 /V0)1/2 in accord with
our initial assumption. Similar to the case of thea defect,
these frequencies change periodically withj, but unlike the
previous case, they both split off the center of the gapV0
and at integer values ofj merge back toV0. The maximum
deviations of the local frequencies fromV0 are of the order
of (G/V0)3/4, they take place for half-integer values ofj.

One can notice that theb defect involves two adjacen
wells, and in the Green’s function approach, one would h
to deal with a system of two coupled equations. According
it can be expected that there must be four possible lo
frequencies~two in each half of the gap!, while we found
only two of them. The reason for this is that the Bragg co
dition makes a pair of frequencies, which are both above
below V0, nearly degenerate, and the difference betwe
them is much smaller than the terms we kept in our appro
mate solution. This can be understood if one notices that
transfer matrices in Eq.~12! contain factors cos(kb), sin(kb),
and cos@k(2a2b)#, sin@k(2a2b)# for the first and the second
of the involved wells, respectively. Exactly at the Bragg fr
quencyka5p these factors coincide leading to the dege
eracy. Since the shift of the actual local frequency from
Bragg frequency is relatively small, the solutions rema
nearly degenerate. The fact that obtained solutions are s
metrical with respect to the replacement ofb with 2a2b is
not surprising and reflects the symmetry of the transfer m
trices discussed above.

III. DEFECT LPM’S AND TRANSMITTANCE
AND REFLECTANCE EXPERIMENTS

In this section, we study how the local defect modes o
tained above affect the reflection and transmission spectr
the finite-size periodic Bragg MQW’s in the presence of h
mogeneous broadening. Transmission and reflection co
cients can be expressed in terms of the elements of the
transfer matrix defined by Eq.~11! as
1-5
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T5utu25U 2detT̂

~T111T22!2 i ~T122T21!
U2

, ~19!

R5ur u25U2 ~T112T22!1 i ~T121T21!

~T111T22!2 i ~T122T21!
U2

. ~20!

Without absorption,T and R in the form of Eqs.~19! and
~20! can be shown to add up to unity. In the denominators
T and R one can recognize the dispersion relation Eq.~13!
that was obtained in the previous section by matching
decaying solutions on both sides of the defect.

G andV defects differ from the original QW’s only in the
definition of the parameterb, therefore, they both can b
dealt with at the same time. The exact expression forT is
cumbersome, however, if the length of the system is lon
than the penetration length over the frequency region of
terest, it can be simplified. In this case, the smaller eig
value of the total transfer matrix is proportional
exp@2Na/lloc(v)#, wherel loc is given by Eq.~5!, and can be
neglected. The expression for the transmission coeffic
then can be presented as17

t5
t0

~11«!1 i exp~2 ik0Na!«Ft0 cosh@~N22n011!ka#
,

~21!

where we introduce the defect parameter«5(bde f

2b)/2AD, which is equal to zero whenbde f5b; n0 is the
position of the defect QW, k51/l loc(v), and F
5b/@sin(k0a)AD#. For«50, Eq.~21! gives the transmission
coefficientt0 of the pure system,

t05
2eikL exp~2kL !

11 i @22bcot~ka!#/AD
, ~22!
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exhibiting an exponential decay characteristic of the evan
cent modes from a band gap.

Equation ~21! describes the resonance tunneling of t
electromagnetic waves through MQW with the defect. T
equation

11«50

can be shown to coincide with the dispersion equations
local defect modes of the infinite structure in the case ofV
andG defects. Given this fact and the structure of Eq.~21!, it
seems natural to assume, as we did in our previous pape17

that the transmission reaches its maximum value at the
quencies of the local modes. More careful considerat
showed, however, that the systems under consideration
have in a less trivial way, and that maxima of the transm
sion occur at frequencies shifted from the frequency of
local modes. This is quite unusual behavior that distinguis
the systems under consideration from other instances of r
nance tunneling. Moreover, we shall show that contrary
our previous result,17 the transmission at the maximum
always equal to unity~in the absence of absorption!.

Evaluation of the exact analytical expression for the tra
mission coefficient Eq.~19!, obtained from the total transfe
matrix, showed that the distinctive resonance transmiss
occurs only if local modes lie not too close to the boundar
or the center~which is, strictly speaking, also a degenera
boundary! of the gap.G defects, therefore, can be exclude
from consideration, as well as one of the solutions for theV
defect. For frequencies close to the remaining local mo
@the solution for theV defect given by Eq.~8!# the expres-
sion for the transmission coefficient Eq.~21! can be simpli-
fied. Expansion in the vicinity of the local mode gives
T5

S v2V1

vde f2V1
D 2

11A1Uv2v r cosh@~N22n011!ka#~11 i •A2!

vde f2v r
U2

•S v r2V1

vde f2V1
D 2 • ~23!
n
the

g

ParametersA1 , A2, andv r are defined by

A15
~v12vde f!

2~vde f2v2!2

4~vde f2V0!2~vde f2v l !~vu2vde f!
, ~24!

A25
~vde f2V0!A~vde f2v l !~vu2vde f!

~v12vde f!~vde f2v2!

3tanh@~N22n011!ka#, ~25!
v r5vde f1p
~v12vde f!~vde f2v2!

V0

3
~vde f2V0!

A~vde f2v l !~vu2vde f!
e2kNa, ~26!

wherev65V06(vu2V0)/A2. The resonance transmissio
occurs when the defect layer is located in the center of
systemN22n01150. In this case, the coefficientA2 be-
comes zero and Eq.~23! can be presented in the followin
form
1-6
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T5
4gV

2

4gV
2 1Q2

~v2vT1Q!2

~v2vT!214gV
2

, ~27!

whereQ5v r2V1, and the parametergV is given by

gV5pV0S vde f2V0

V0
D 2

e2kNa. ~28!

The transmission spectrum described by Eq.~27! has a shape
known as a Fano resonance.23 At vT5v r14gV

2 /Q the reso-
nance frequency, at which the transmission turns to un
and parametersgV andQ describe the width and the asym
metry of the resonance respectively. One can see from
~26! that in general the transmission resonance frequenc
shifted with respect to the frequency of the local mode. T
shift, though exponentially small for long systems cons
ered here, is of the same order of magnitude as the widt
the resonancegV , and is, therefore, significant. These tw
frequencies,v r andvde f , coincide in the special case whe
vde f5v6 . The fact that the transmission is equal to one,
this particular case, was obtained in our previous paper~Ref.
17!.

At v5v r2Q5V1 the transmission equals zero, which
a signature of Fano resonances. Usually the presence of
resonances is associated with interaction between a dis
level and a continuum of states. This is not the case in
situation under consideration. Zero of the transmission in
case is caused by the fact that theV defect brings to the
dielectric function of the system a new pole atV1, which
describes the interaction between electromagnetic waves
excitons of the defect well. The penetration length diverg
at V1, and transmission, therefore, vanishes. The interac
with excitons, at the same time, leads to the radiative shif
the frequency of the local mode, and hence, the frequenc
the transmission resonance, away fromV1. The combination
of these two factors is responsible for the Fano-like shap
the transmission resonance. The actual form of the F
spectrum in an ideal system without absorption is determi
by the interplay between the width parametergV and the
asymmetry parameterQ. The former exponentially decrease
with an increase of the length of the system, while the la
is length independent. However, the pre-exponential facto
i
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gV is of the order of the exciton resonance frequencyV0,
while Q is of the order ofG, i.e., significantly smaller. There
fore, in principle, there are two possible cases:gV@Q for
shorter systems@1!kNa! log(V0 /Q)#, and gV!Q for
longer systems. In the first case, the transmission spec
has a distinctively Fano-like asymmetrical shape, while
the second limit the spectrum attains the symmetrical Lore
zian shape characteristic for Wigner-Breit24 resonances. Fig-
ure 4 shows the evolution of the shape of the transmiss
resonance in the absence of absorption from Fano-like
Wigner-Breit-like behavior with an increase of the length
the system. One can also see from this figure how the p
tion of the transmission maximum moves with an increase
the length. An actual possibility to observe the Fano re
nance in the considered situation depends strongly upon
strength of absorption in the system, which must be at le
smaller thanQ. A more detailed discussion of absorptio
related effects is given below in the present section.

Calculation of the transmission coefficient for thea defect
can be carried out in a similar manner. Dropping the ex
nentially small contribution from the smaller eigenvalue t
transmission matrix can be written in the following form:

FIG. 4. The shape of the transmission maximum for th
lengths N5101,201,301. For all lengths, theV defect is in the
center of the system.V151.492 491 eV is the exciton frequenc
of the defect layer. The exciton resonant frequencyV0 is 1.491 eV,
the exciton-light coupling constantG0 is 27 meV as in the InGaAs/
GaAs structures studied in Ref. 8, however, no homogeneous br
ening is assumed.
t5
t0

~11«a!1 ie2 i (v/c)NaF2 sinFvc ~b2a!G t0 cosh@~N22n0!ka#

, ~29!
. In
:

where

«a5

sinS v

c
bD2sinS v

c
aD2l1S 12

b

2AD
D sinFvc ~b2a!G

sinS v

c
aD .

Similar to the previous defects, 11«a50 coincides with the
dispersion equation for an infinite system, but the transm
 s-

sion resonance is shifted with respect to the local mode
the vicinity of the resonance, Eq.~29! can be presented as

T5
1

11A1Uv2vT cosh@~N22n0!ka#~11 i •A2!

vde f2vT
U2 , ~30!

where parametersA1 and A2 are again given by Eqs.~24!
and ~25!, respectively. One only needs to replaceN22n0
1-7
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11 in Eq.~25! with N22n0, which reflects the new symme
try of the system. The frequencies of local modesvde f are
now given by Eqs.~15! and ~16!, andvT is defined by

vT5vde f12~vde f2V0!

3
~v12vde f!~vde f2v2!~vde f2v l !~vu2vde f!

~vu2V0!4

3e2kNa. ~31!

The resonance transmission again occurs whenN22n050,
which requires an even number of wells in the system. Eq
tion ~30! in this case takes the standard Wigner-Br
shape

T5
4ga

2

~v2vT!214ga
2

, ~32!

with the half-widthga given now by
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ga52
~vde f2V0!2~vde f2v l !

3/2~vu2vde f!
3/2

~vu2V0!4
e2kNa. ~33!

The frequencyvT , where the transmission coefficient tak
the maximum value of unity, is again shifted from the fr
quency of the defect mode. The two frequencies coinc
however, when the defect frequency is made equal tov6 .
As one can see from Eq.~15!, these conditions can be sati
fied simultaneously for both defect frequencies of thea de-
fect whenb.( integer11/2)a @see Fig. 2~b!#. In this case,
the position of the transmission resonance becomes inde
dent of the length of the system.

Finally, theb defect gives an expression for the transm
sion coefficient very similar to Eq.~21! with the only dis-
tinction thate has to be replaced by a different expressio
which is too cumbersome to be displayed here. The ma
mum transmission for a given defect is again achieved w
the defect is in the center of the system (N is odd!. Expand-
ing the transmission coefficient near the frequency of
respective local mode, one obtains
T5
1

11
1

4 S vu2V0

vde f2V0
D 2U v2vT

vde f2vT
1 i •sinh@~N22n011!ka#U2 , ~34!
de-
For
po-
se-
ap-
ent
ple

so-
ter.
ctor
m-
gth.
cal-
er

nce
he

ed
-
e

e-
n
o-
rate

8
m,
ong
with vT now given by

vT5vde f22~vde f2V0!e2kNa. ~35!

Unlike other types of defects, in this case, the transmiss
resonance is always different fromvde f . When the defect is
at the resonance positionN22n01150, the transmission
spectrum again takes the Wigner-Breit shape with the re
nance width determined by parametergb , wheregb is given
by

gb52
~vde f2V0!2

vu2V0
e2kNa. ~36!

In real systems, enhancement of the transmission co
cient is usually limited by homogeneous broadening of ex
ton resonances. Two cases are possible when exciton d
ing is taken into account. It can suppress the resona
transmission, and the presence of the local states can on
observed in not very long systems as a small enhanceme
absorption at the local frequency. This can be called a we
coupling regime for LPM, when incident radiation is res
nantly absorbed by local exciton states. The opposite c
when the resonance transmission persists in the presen
damping, can be called a strong-coupling regime. In t
case, there is a coherent coupling between the exciton
the electromagnetic field, so that the local states can be
ably called local polaritons. Qualitatively, we can assess
n

o-

fi-
i-
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ce
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e,
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e

effect of absorption on resonances caused by different
fects by looking at the widths of the respective spectra.
all types of defects, the width of respective resonances ex
nentially decreases with the length of the system, con
quently, in sufficiently long systems all resonances diss
pear. However, pre-exponential factors make differ
defects behave differently at intermediate distances. A sim
qualitative estimate would require that the width of the re
nances be smaller than the exciton relaxation parame
Therefore, the resonances, where the pre-exponential fa
of the width is considerably larger than the relaxation para
eter, can be observed in the systems of intermediate len
On the one hand, the length must be greater than the lo
ization length of the respective local mode. On the oth
hand, it must be small enough for the width of the resona
to remain larger than the exciton relaxation parameter. T
Fano resonance arising in the case of theV defect though,
requires special consideration since its vitality is determin
by the asymmetry parameterQ rather than by the width pa
rametergV . Although the latter is determined by the larg
pre-exponent~of the order of the exciton resonance fr
quencyV0!, the former is of the order of the light-excito
coupling constantG0, which is much smaller. The Fano res
nance will likely be washed out as soon as the relaxation
exceeds this asymmetry parameterQ. This circumstance will
prevent observation of the Fano resonance due toV defect in
InxGa12xAs/GaAs MQW’s, experimentally studied in Ref.
which is, to the best of our knowledge, the only syste
where radiative coupling was observed for systems as l
1-8
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as 100 wells. In this system, the exciton resonance freque
V0 and the exciton-light coupling parameterG0 were, re-
spectively, equal toV051.491 eV, andG0527 meV, while
the exciton relaxation parameter was estimated asgnr
5280 meV.8 This parameter, however, includes both hom
geneous and nonhomogeneous contributions. Experim
carried out in Ref. 5 with Bragg GaAs/AlxGa12xAs MQW
system provide information about the magnitude of pure
mogeneous broadening in this system. According to Re
radiative and nonradiative rates in GaAs/Al0.3Ga0.7As system
consisting of 10 wells are equal, respectively, toG0
567 meV andgnr512.6meV. One can see that if the inho
mogeneous broadening could be reduced, the conditions
observation of the Fano resonance would be significa
improved.

The pre-exponent of the resonance width in the case
the a defect is of the order of magnitude of the gap wid
which is proportional toAG0V0. It is considerably larger
than gnr for the InxGa12xAs/GaAs MQW’s and we expect
therefore, that it can be easily observed in readily availa
samples of this composition. As far as theb defect is con-
cerned, it gives rise to extremely narrow transmission pe
which are characterized by a pre-exponential factor of
order of G0. It, therefore, will be washed out in
InxGa12xAs/GaAs MQW’s, but can be reproduced in 60–
wells long systems with the parameters similar
GaAs/AlxGa12xAs MQW’s studied in Ref. 5 if inhomoge
neous broadening could be significantly reduced.

We compliment the qualitative arguments presented ab
with numerical evaluation of exact expressions for the tra
mission, and reflection coefficients, Eqs.~19! and~20!, using
parameters of the mentioned InxGa12xAs/GaAs systems. In
order to illustrate what kind of effects could be observed
samples with reduced inhomogeneous broadening, we
present results obtained with parameters
GaAs/AlxGa12xAs systems with only homogeneous rela
ation included. To account for nonradiative decay quant
tively, we add an imaginary part to the denominator of t
parameterb:

b5
4G0v

v22V0
212ignrv

.

Figure 5 shows transmission and reflection coefficients of
Bragg MQW lattice made of 201 quantum wells with theV
defect in the center with parameters corresponding to
InxGa12xAs/GaAs system. One can see that absorpt
washes out the strong asymmetric pattern of the Fano r
nance, but some remains of the resonance are still q
prominent, and can probably be observed in high-qua
samples. Figure 6 represents the spectra of a 101 well
system with parameters corresponding to GaAs/AlxGa12xAs,
but without contribution from inhomogeneous broadenin
One can see a characteristic asymmetric profile of the F
resonance both in transmission and reflection. There is al
remarkably strong and narrow absorption line at the re
nance frequency with more than eightfold growth of abso
tion at the resonance. This behavior should be contra
with the previous figure, where absorption spectrum is rat
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flat with only insignificant increase at the resonance f
quency. In the case of theb defect, strong exciton absorptio
characteristic for the InxGa12xAs/GaAs structures washe
out any resonance features from the spectrum. The r
nances, however, survive if only homogeneous broadenin
included. In this case, one would have very narrow symm
ric transmission, reflection and absorption lines~Fig. 7! lo-
cated rather close to the center of the gap. It is interestin
compare resonance behavior of theb defect and theV defect
in the regime of strong coupling. The latter results in abso
tion that, though increased sharply at the resonance, is
rather weak, at the same time, the transmission reache
this case almost 80%. In the former case, however, the tr
mission does not grow that dramatically~up to about 0.4!,
but absorption increases by two orders of magnitude. T
difference is caused by the different shapes of the re
nances: the Fano resonance is considerably wider and, th
fore, results in less dramatic increase in the maxim
absorption.

Figure 8 shows the transmission and reflection of
Bragg MQW lattice of 200 quantum wells with thea defect
with j5b/a51.5 and parameters of the InxGa12xAs/GaAs
system. This is the only defect for which the strong-coupli
regime can be realized for this material. But since this is
only system, for which the samples with large number
wells were experimentally grown, we shall discuss the
lated results in more details. For thea defect with the

FIG. 5. Transmission, reflection, and absorption coefficients
the V-type defect. The defect is placed in the center of the MQ
with 201 quantum wells. The exciton frequency of the defect w
V1 is chosen such that (V12V0)/V051.003. Numerical values o
the exciton resonant frequency and the exciton-light coupling c
stant were taken for InGaAs/GaAs structures studied in Ref
Solid lines show results obtained in the absence of absorption,
dashed lines were calculated in the presence of experimen
observed8 homogeneous broadening.
1-9
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strengthj51.5, one has two symmetric with respect to t
center resonances. The peaks are very pronounced in
tranmission, and the contrast in reflection is very large
about 30%, and can be made even larger if one increase
length of the system. The spectra shown in Fig. 8 can, h
ever, be affected by the presence of the additional reson
due to 2s excitons. In Ref. 8 it was shown that this resonan
causes asymmetry of the reflection spectrum. We expect
it could have the similar effect upon spectra presented in
8 causing an asymmetry between low- and high-freque
portions of the spectra. Even if 2s excitons contribute addi
tional resonances to the spectra, they would be rather we8

and could be clearly distinguished from the effects cons
ered in the present paper. As an additional identification t
one can use the dependence of the defect induced fea
upon the defect parameterb/a, while a contribution from the
2s exciton resonance would not be affected by change
this parameter. Besides, changing the parameters of the
fect, one can move the transmission resonances closer t
center of the gap and farther away from the 2s exciton reso-
nance. We can conclude, therefore, that the strong coup
between local excitons and local photons can be experim
tally realized in readily available samples
InxGa12xAs/GaAs MQW’s. If, however, one could reduc
disorder in the samples, the optical resonances due toa de-
fect would be even more pronounced with more drama
increase in transmission and absorption at the resonance
quencies.

FIG. 6. Transmission, reflection, and absorption coefficients
the V-type defect. The defect is placed in the center of the MQ
with 101 quantum wells. The exciton frequency of the defect w
V1 is chosen such that (V12V0)/V051.003. Numerical values o
the exciton resonant frequency and the exciton-light coupling c
stant were taken for GaAs/AlGaAs structures studied in Ref. 5.
results were obtained in the presence of experimentally obser5

homogeneous broadening.
07532
the

the
-
ce
e
at

g.
y

k,
-
l,
res

in
e-

the

ng
n-

c
re-

It is interesting to note that the effects of local modes
the resulting absorption of the incident wave is very weak
the case of weak coupling. Even though there is some sm
enhancement of absorption at the resonance frequencies
much weaker than absorption peaks when strong couplin
realized. In other words, local polaritons in the regime
strong coupling demonstrate resonance behavior in b
transmission and absorption at the same time, while in
weak-coupling regime there is only a small effect of the lo
states upon all optical spectra of the system. The explana
for this behavior lies in the spatial distribution of the ele
tromagnetic wave intensity throughout the system. In the
sence of absorption, the electric field at the resonance
quency decays exponentially away from the defect layer,
there occurs a strong exponential enhancement of the
dent field at the defect layer.18,25 We used a self-embeddin
technique, adopted for the discrete systems in Ref. 18
calculate numerically the electromagnetic field inside
MQW structure. In the absence of absorption, we obser
the exponential increase of the field compared to the am
tude of the incident electromagnetic waveEin

uEmaxu5uEinu•e(N/2)ka. ~37!

Nonradiative broadening suppresses not only the reson
transmission but also the exponential enhancement of
electric field. If the strong coupling regime is not realize
the intensity of the wave decreases exponentially through
the sample almost as it would in the absence of the def
and is just slightly larger at the resonance frequency than

r

ll

-
ll
d

FIG. 7. Transmission, reflection, and absorption coefficients
the b-type defect. The defect is placed in the center of the MQ
with 101 quantum wells. The defect strength isj5b/a51.5. Nu-
merical values of the exciton resonant frequency and the exci
light coupling constant were taken for GaAs/AlGaAs structu
studied in Ref. 5. All results were obtained in the presence of
perimentally observed5 homogeneous broadening.
1-10
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LOCAL POLARITON MODES AND RESONANT . . . PHYSICAL REVIEW B 64 075321
resonance. Therefore, the peaks in absorption in these c
are also only minute. At the same time, Fig. 9 shows t
even in the presence of absorption thea defect in the
InxGa12xAs/GaAs MQW’s, which remains in the regime o
strong coupling, demonstrates more than a three-fold
hancement ofuEu2 at the location of the defect for the syste
of an optimal length. Figure 10~a! shows the evolution of the
electric field at frequencyvT at the location of the defect a
the size of the system grows~for systems with different
sizes, the defect is always located in the center of the st
ture!. One can see that the exponential growth of the field
the absence of absorption~solid curve! changes to a non
monotonic behavior when absorption is included~dashed
line!. For the particular system under consideration, the fi
reaches its maximum at aboutNm5450, where we see th
crossover from the resonant enhancement regime (N,Nm)
to the exponential decay (N.Nm). Enhancement of the field
at the defect explains both transmission and absorption r
nances.

In the absence of the inhomogeneous broadening, m
stronger enhancement of the field at the resonance for t
types of defects takes place@Fig. 10~b!#. We see that forN
5100, the intensity of the electric field at the location of t
b defect is enhanced by the factor of 50. It correlates with
strong increase of absorption in this case. The differenc
absorption betweenb and V defects also signals about th
difference in the field distribution. The fact that theV defect
leads to the vanishing transmission at the frequencyV1

FIG. 8. Transmission, reflection, and absorption coefficients
the a-type defect. The defect is placed in the center of the MQ
with 200 quantum wells. The defect strength isj5b/a51.5. Nu-
merical values of the exciton resonant frequency and the exci
light coupling constant were taken for InGaAs/GaAs structu
studied in Ref. 8. Solid lines show results obtained in the absenc
absorption, and dashed lines were calculated in the presenc
experimentally observed8 homogeneous broadening.
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translates, as computer simulations show, into the vanish
electric field everywhere behind the defect at this freque
—the defect acts as an almost perfect reflector. The gro
of the intensity of the field at spectrally close frequencyV0
is also limited to only 1.5 of the incident intensity, which
much smaller than in the case of theb defect. The strong
enhancement of the field at the location of theb defect has
simple physical explanation. The frequency of the loc
states due to theb defect lies close to the exciton frequenc
that is tuned such thatl/25a. This means that at the fre
quency of the local mode, all QW’s but one@the defect one,
see also Fig. 1~b!# lie in the nodes of the electromagnet
wave.2 Therefore, one could expect stronger than us
growth of the electric field at the defect. From this consid
ation, one should expect the maximum effect to occur wh
the defect QW is placed in an antinode, where the elec
field is the largest. We already encountered this conditi
when we studied the transmittance in the presence of
type of defect—the most favorable value of the defe
strength wasb/a50.5 orb/a51.5. This peculiar spatial dis
tribution of the electric field explains the narrow transm
sion peak and strong enhancement of the electric field on
defect. This fact has great potential for applications if th
type of the defect is realized experimentally.

IV. CONCLUSION

The main objective of the present paper was to dem
strate that introducing ‘‘defects’’ in periodic Bragg MQW

r

n-
s
of
of

FIG. 9. The distribution of the electric field at the frequencyvT

in the system with thea-defect placed exactly in the middle withou
~a! and with~b! experimentally observed8 homogenous broadening
The defect strength isj5b/a51.5. Numerical values of the excito
resonant frequency and the exciton-light coupling constant w
taken for InGaAs/GaAs structures studied in Ref. 8. Four cur
correspond to different sizes of the system: 100, 200, 400, and 1
QW’s.
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systems, one can obtain new opportunities to tailor opt
properties of quantum heterostructures. By ‘‘defects’’ w
mean wells or barriers with properties different from those
the host structure. We consider four different types of defe
and show that each of them affects the optical spectra of
structure differently. Using available from literature para
eters of InxGa12xAs/GaAs8 MQW’s we generate the reflec
tion and transmission spectra for this readily available str
ture and show that they are significantly modified in t
presence of the defect layers. We also computed optical s
tra for a hypothetical system without inhomogeneous bro
ening. Other parameters such as the rate of homogen
decay, and exciton-photon coupling corresponded to
GaAs/AlxGa12xAs MQW’s studied in Ref. 5. We showe
that inhomogeneous broadening is the main limiting facto
producing strong modifications of optical spectra of def
MQW’s.

Among the four types of defect considered in the pap
three are of special interest. First, theV-defect, arises when
one of the QW’s is replaced by a well with a different exc
ton resonance frequencyV1. In this case, two new loca
modes arise within the band gap of the original structure,
only one of them, which manifests radiative shift fromV1,

FIG. 10. ~a! The dependence of the strength of the electric fi
at the position of thea defect in InGaAs/GaAs structures~from Fig.
9! at vT on the size of the system with~dashed line! and without
~solid line! homogeneous broadening. The other defects did
demonstrate resonance enhancement of the electric field and a
shown here.~b! The dependence of the strength of the electric fi
at the position of thea, b, andV defects in GaAs/AlGaAs struc
tures atvT on the size of the system is shown. Numerical values
the exciton resonant frequency and the exciton-light coupling c
stant were taken from Ref. 5. All results were obtained in the p
ence of experimentally observed5 homogeneous broadening. Th
defect strengths arej5b/a51.5 for a and b defects, and (V1

2V0)/V050.9963 for theV defect. In the presence of the realist
homogeneous broadening, all three types of the defects show
resonance enhancement of the electric field.
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can significantly affect optical spectra of the system. W
found that the resonance transmission of radiation due to
local state results in strongly asymmetric Fano-like transm
sion spectrum. This transmission resonance turned out t
very sensitive to the presence of nonradiative broadenin
can only survive if the total broadening~including both ho-
mogeneous and nonhomogeneous contributions! does not ex-
ceed the strength of radiative coupling between excitons
light. Using available data, we concluded that the Fano re
nance could not be observed in InxGa12xAs/GaAs systems,
but would survive if inhomogeneous broadening could
significantly reduced. Absorption spectrum of such a str
ture would demonstrate a narrow line with absorption thou
increased at resonance, but still relatively weak. The we
ness of the absoprtion correlates with the fact that the in
sity of the field at this defect increases only slightly.

Another defect with interesting properties considered
the paper is theb defect, which arises when one shifts th
position of one of the wells keeping coordinates of all oth
intact. This corresponds to changes in the thicknesses of
adjacent barriers. This defect produces two local modes w
frequencies close to the center of the gap. Respective tr
mission resonances have regular symmetric Lorentz
shapes but with rather narrow widths. The last circumsta
makes these defects also very vulnerable to the nonradia
broadening, and they can only survive in systems with
radiative decay rate greater than the non-radiative one
however, this resonance is realized, one can obtain a na
absorption line with almost two orders of magnitude increa
in absorption at the resonance, or what is even more im
tant, 50-fold increase in the intensity of the electromagne
field at the defect QW~for zero inhomogeneous but realist
homogeneous broadenings!.

The most robust of the local polariton modes is produc
by thea defect. In this case the width of one of the barrie
is increased, while all other barriers remain the same.
defect produced in this way resembles a regular microcav
but with optically active mirrors. This fact distinguishes th
system considered here from regular cavities with, for
stance, Bragg-distributed mirrors. Local states arising in
case give rise to rather wide resonances in optical spe
which can survive strong enough nonradiative broaden
and can be observed in readily available InxGa12xAs/GaAs
samples.

The results obtained demonstrate that one has a grea
riety of opportunities to tailor optical properties using defe
MQW’s. These systems can have a range of different ap
cations. For example, the great sensitivity of the defe
induced features of optical spectra to characteristics of
system can be used for characterization of both host Q
and defect wells. This sensitivity also leads to possibilities
tune the frequencies of local modes by means of applica
of stress, electric or magnetic field, or other stimuli. Anoth
important feature with great potential for applications is t
increase of the field intensity in the vicinity of the defe
well. It can be utilized in order to enhance optical nonline
ity of the system. It is also worth noting that the local mod
considered here can be useful as tunable sources of na
luminescent lines at the frequencies of the local modes.
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Besides opportunities for applications, the effects cons
ered in the paper are interesting from the academic poin
view. The tunneling resonances associated with the local
laritons have a number of peculiarities compared to ot
examples of resonance tunneling phenomena. For insta
the Fano-like transmission produced by theV defect appears
here under new circumstances, specific for this particu
system. Another interesting feature of the local polaritons
that the frequencies of transmission resonances are alw
shifted with respect to the eigen frequencies of the mo
and depends upon the length of the system. Concluding
structures considered in the present paper demonstra
number of interesting optical effects and have a potential
at

to
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.

.
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a variety of applications. We hope that this paper wou
stimulate experimental observation and utilization of the p
dicted effects here.
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