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Effects of resonant tunneling in electromagnetic wave propagation through a polariton gap
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We consider tunneling of electromagnetic waves through a polariton band gap of a one-dimensional chain of
atoms. We analytically show that a defect embedded in the structure gives rise to the resonance transmission
at the frequency of a local polariton state associated with the defect. Numerical Monte Carlo simulations are
used to examine properties of the electromagnetic band arising inside the polariton gap due to finite concen-
tration of defects[S0163-18209)03418-9

I. INTRODUCTION bedded in such a chain results in near 100% transmission at
the frequency of local polaritons through a relatively short
The resonant tunneling of electromagnetic waves througlhain (50 atom$. The frequency profile of the transmission
different types of optical barriers is a fast developing area ofvas found to be strongly assymetric, in contrast to the case
optical physics. This effect was considered for photonicof electron tunneling®
crystalst2 where forbidden band gaps in the electromagnetic In most casegat least for a small concentration of the
spectrum form optical barriers. Macroscopic defects embediransmitting centejsone-dimensional models give a reliable
ded in the photonic crystal give rise to local photondescription of tunneling processes, because by virtue of tun-
modes®~’ which induce the resonant transmission of electro-neling, a wave propagates along a chain of resonance cen-
magnetic waves through the band gaps. ters, for which a 1D topology has the highest probability of
A different type of photonic band gaps arises in polaroccurrencé. In our situation, it is also important that the
dielectrics, where a strong resonance interaction between tHecal polariton stategtransmitting centejsoccur without a
electromagnetic field and dipole active internal excitations othreshold in 3D systems as well as in 1D systems. This en-
a dielectric brings about a gap between different branches afures that the transmission resonances found in Ref. 9 are not
polaritons. Recently it was suggested that regular microartifacts of the one-dimensional nature of the model, and
scopic impurities embedded in such a dielectric give rise tqustifies a further development of the model. In the present
local polariton state&;° where a photon is coupled to an paper we pursue this development in two interconnected di-
intrinsic excitation of a crystal, and both these componentsections. First, we present an exact analytical solution of the
are localized in the vicinity of the defett.The main pecu- transmission problem through the chain with a single defect.
liarity of the local polaritons is that their electromagnetic This solution explains the unusual asymmetric shape of the
component is bound by microscopicdefect whose size is transmission profile found in numerical calculatidrend
many order of magnitude smaller then the wavelengths oprovides insight into the phenomenon under consideration.
respective photons. Another important property of thesesecond, we carry out numerical Monte Carlo simulation of
states is the absence of a threshold for their appearance evtre electromagnetic transmission through a macroscopically
in three-dimensional3D) isotropic systems, while for all long chain with a finite concentration of defects, and study
other known local states the “strength” of a defect mustthe development of a defect-induced electromagnetic pass
exceed a certain critical value before the state would split ofband within the polariton band gap. The analytical solution
a continous spectrum. The reason for this peculiar behaviarf a single-defect model allows us to suggest a physical in-
is a strong van Hove singularity in the polariton density ofterpretation for some of the peculiarities of the transmission
states in the long-wave region, caused by a negative effectivieund in numerical simulations. As a by product of our nu-
mass of the polariton-forming excitations of a crystal. merical results we present an algorithm used for the compu-
The feasibility of resonant electromagnetic tunneling in-tation of the transmission. This algorithm is based upon a
duced by local polaritons, however, is not self-evident. Theblend of the transfer-matrix approach with ideas of the
idea of a microscopic defect affecting propagation of wavesnvariant-embedding methdd,and proves to be extremely
with macroscopic wavelength seems to be in contradictiorstable even deep inside the band gap, where traditional meth-
with common wisdom. Besides, it was found that the energyds would not work.
of the electromagnetic component of local polaritons is very Though we consider the one-dimensional model, the re-
small compared to the energy of its crystal counterpart. Theults obtained are suggestive for experimental observation of
existence of the tunneling effect was first numerically dem-+the predicted effects. Actually the damping of the electro-
onstrated in Ref. 9, where a 1D chain of dipoles interactingnagnetic waves is more experimentally restrictive than the
with a scalar field imitating transverse electromagnetictopology of the system. We, however, discuss the effects due
waves was considered. It was found that a single defect emie damping and come to the conclusion that the effects under
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discussion can be observed in regular ionic crystals in the w? d2E w2
region of their phonon-polariton band gaps. —2E(x)+ — =—4r— 2 P,é(na—x), 3
The paper is organized as follows. The Introduction is c dx ¢ n

followed by an analytical solution of the transmission prob-

lem in a single-impurity situation. The next section presentdvhere the right-hand side is the polarization density caused
results of Monte Carlo computer simulations. The algorithmPy atomic dipole moments, and is the speed of light in
used in numerical calculations is derived and discussed in théacuum. The coordinatein Eq. (3) is along the chain with
Appendix. The paper concludes with a discussion of the rean interatomic distanca. Equations(1) and (3) present a

sults. microscopic description of the transverse electromagnetic
waves propagating along the chain in the sense that it does
Il. DESCRIPTION OF THE MODEL AND ANALYTICAL not make use of the concept of the dielectric permeability,
SOLUTION OF A SINGLE-DEFECT PROBLEM and takes into account all modes of the field including those
with wave numbers outside of the first Brillouin band.
A. The model This approach enables us to address several general ques-

Our system consists of a chain of atoms interacting witHions. A local state is usually composed of states with all
each other and with a scalar “electromagnetic” field. AtomsPOssible values of wave numblerStates with largé cannot
are represented by their dipole momeRts where the index be considered within a macroscopic dlelectrlc function
n represents the position of an atom in the chain. Dynamic&€ory, and attempts to do so lead to divergent integrals that
of the atoms is described within the tight-binding approxi-need to be renormalized.in our approach, all expressions

mation with an interaction between nearest neighbors only,2r¢ Well defined, so we can check whether a contribution
from largek is important, and if the long-wave approxima-

(Q2— w?)P i+ ® (P 1+ Py_1)=aE(X,), (1) tion gives reliable results. Calculation of the integrals ap-
_ . . pearing in the 3D theory requires detailed knowledge of the
where® is a parameter of the interaction, aﬁ(ﬁ represents  gpectrum of excitations of a crystal throughout the entire
the site energy. Impurities in the model differ from host at-gyjjiouin band. This makes analytical consideration practi-
oms in this parameter only, so cally unfeasible. In our 1D model, we can carry out the cal-
2 A2 2 culations analytically(in a single-impurity caseand exam-
Q=05 T Q1(1=Cy), @) ine the influer)(ce 01}(differentg facto?éan()j/ approximations
whereQS is the site energy of a host atom,f describes an upon the frequency of a local state and the transmission co-
impurity, ¢, is a random variable taking values 1 and 0 with efficient. Using caution, the results obtained can be used to
probabilities 1-p and p, respectively. Parametgs, there- ~ assess approximations in 3D cases.
fore, sets the concentration of the impurities in our system.
This choice of the dynamical equation corresponds to exci- B. A single impurity problem
tonlike polarization waves. Phononlike waves can be pre-
sented in a form that is similar to Eql) with Q2=032
+(1—¢p)(1— Mge/ Mposd @2, Where Myer and M, are
masses of defects and host atoms, respectively.
Polaritons in the system arise as collective excitations of 1=A02%G(0), 4
dipoles (polarization wavescoupled to the electromagnetic
waveE(x,), by means of a coupling parameter The elec- where, however, the expression for the polariton Green’s
tromagnetic subsystem is described by the following equafunction G(n—ng) responsible for the mechanical excitation
tion of motion: of the system can be obtained in the explicit form

The equation for the frequency of the local polariton state
in the 1D chain has a form similar to that derived in Ref. 8

G(n—ng)=> cosak) ~cosalc) s exdik(n—no)al. (5)

[wZ—QS—ZCD cogka)][cogak)—codaw/c)]— sin(aw/c)

If one neglects the term responsible for the coupling to thepolariton branches. This gap exists if the paraméten the
electromagnetic field, the Green’s functi@(n—ng) is re-  dispersion equation of the polariton wave is positive, and the
duced to that of the pure atomic system. This fact reflects theffective mass of the excitations in the long-wave limit is,
nature of the defect in our model: it only disturbs the me-therefore, negative.

chanical(not related to the interaction with the fig¢ldrop- The diagonal elemen®(0) of Green's function5) can
erties of the system. A solution of E@) can be real valued be calculated exactly. The dispersion equatiénthen takes
only if it falls into the gap between the upper and lowerthe following form:
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1-\/———
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1
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cojaw/c)—Qy(w)

1=A02 2_32_ A2
VQj(w)—1 0 ={;-A0

3 cos{aw/c)—Ql(w)l
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whereQ; o(w), _
whereQ =03+ 2® is a fundamentall=0) frequency of a
1 aw wZ—QS chain composed of impurity atoms only. Two other terms in
QAw)=5 CO{T + T} +5D(w), (7)) Eq.(12) present corrections to this frequency due to the spa-

tial dispersion and the interaction with the electromagnetic
field, respectively. One can see that both corrections have the
same sign and shift the local frequency into the region be-

tween{)2 and)3. As we see below, this fact is significant
®  for the transport properties of the chain.

Transmission through the system can be considered in the
framework of the transfer matrix approach. This method was
adapted for the particular case of the system under consider-
ation in Ref. 9. The state of the system is described by the

D(w)= \/

give the poles of the integrand in Ecp). The bottom of the
polariton gap is determined by the conditibifw) =0, yield-
ing in the long-wave limitaw/c<<1, for the corresponding

frequency, vector v,, with components P,, P,.1, E,, E//k,,
which obeys the following difference equation:
2~62—262d@ (9) ’ ’ )
@t ¢ Un+1= TnUp . (13

where we introduce parameterd?’=4mala, Q5=0Q3 ;I:;ebtermsgir ;?égggtiizglbes the propagation of the vec-

+2®, and take into account that the bandwidth of the polar-

ization waves® obeys the inequality/®a/c<1. The last 0 1 0 0
term in this expression is the correction to the bottom of the 2
; . . . } Q-0 « @ .
polariton gap due to the interaction with the transverse elec 1 _In 2 oska Zsinka
tromagnetic field. Usually this correction is small, but it has T,= ) b ) . (149
an important theoretical, and, in the case of strong enough 0 0 coka  sinka
spatial dispersion and oscillator strength, practical .
significancé Because of this correction the polariton gap 0 —4mk  —sinka coska

starts at a frequency, when the determinBiitv) becomes
imaginary, but function®), () are still less than 1. This
leads to the divergence of the right-hand side of Bjjasw
approaches,, and, hence, to the absence of a threshold fo

Analytical calculation of the transmission coefficient in
the situation considered is not feasible even in the case of a
lsingle impurity because the algebra is too cumbersome. The

the solution of this equation. This divergence is not a 1Dprob|em, however, can be simplified considerably if one ne-

effect since the same behavior is also found in 3D iSOtrOpiLglects the spatial dispersion of the polarization waves. In this
model®1% An asymptotic form for Eq(6) when w— w, in case theT matrix can be reduced to a<2 matrix of the

the 1D case reads following form:

, coska sinka L
/—wz_wlzw%, (10) = —sinka+ 8,coska coska+ g,sinka/’ 19
D
where the parametes,

and differs from the 3D case by the factor dfua)/(c®).
The upper boundary of the gap,, is determined by the 8= Amaw (16)
conditionQ,(w) =0, leading to n c(w2-02)’

wﬁp= ﬁ§+d2, (11) represents the polarizability of theh atom due to its vibra-

tional motion. In this case the complex transmission coeffi-

Eq. (6) also has a singularity as— w,,, but this singularity cientt can be easily expressed in terms of the elements of the
o ; ' ; ; _1N
is exclusively caused by the 1D nature of the system. wéesulting transfer matrixt™ =11},
will discuss local states that are not too close to the upper
boundary in order to avoid manifestations of purely 1D ef- (= 2 o ikL (17
fects. AT =TT

For frequencies deeper inside the gap, @ycan be sim-
plified in the approximation of small spatial dispersion, The problem is, therefore, reduced to the calculatiof®f.
J®alc<1, to yield In the case of a single impurity, the product of the transfer
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matrices,r, can be presented in the following form: =(),. The matrix product in Eq(18) is conveniently calcu-
lated in the basis, where the matrixs diagonal. After some
cumbersome algebra, one obtains for the complex transmis-

where the matrixrqe describes the impurity atom witfk,,  sion coefficient:

TN = N"Nox 7, x 70~ 1, (18

- 2e’t exp(— kL)
B [1—i/\/ﬁ(Z—Bcotka)][(1+s)]+2i exp(— «L)T" coslfka(N—2ny+1)] '

(19

where R=pB%+4pcot@k)—4, I'=ep/[sinka)yR], « is  The width of the resonance is proportional i, and de-

the imaginary wave number of the evanescent electromagsreases exponentially with an increase of the system’s size.
netic excitations, which determines the inverse localizatiorin the long-wave limit,ak<1, Eq.(24) can be rewritten in
length of the local state, and=(Bge— B)/2yR. The last the following form:

parameter describes the difference between host atoms and

the impurity, and is equal to w?-02

2
|tma42:1—(1—2 e ) (25)

27 (Q2-03)
€= w 2 2 o2
cVR (02— 0Q2)(0?-0?

(20)
wherew;, is the resonance frequency satisfying E2). It is

We have also neglected here a contribution from the Seconi&teresting to note that the transmission coefficient becomes
eigenvalue of the transfer matrix, which is proportional toexactly equal to one if the resonance frequency happens to

exp(—2«L), and is exponentially small for sufficiently long °CCU" exactly in the centgr of thezpolagltonzgap. Thls fact has
chains. For =0, Eq.(19) gives the transmission coefficient, & Simple physical meaning. Fas;=5+d*/2 the inverse
t,, of the pure system, localization .Iength.K becgmes equgl to thg wave number
w, /c of the incoming radiation. Owing to this fact, the field
26 expf — kL) and its derivative inside the chain exactly match the field and
0= ' (21) the derivative of the incoming field as though the optical
1- i/\/ﬁ(z— B cotka) properties of the chain are identical to those in vacuum. Con-
sequently, the field propagates through the chain without re-
exhibiting a regular exponential decay. At the lower bound-flection.
ary of the polariton gaf),, parameterss and « diverge, Having solved the transmission problem we can find the
leading to vanishing transmission at the gap edge regardlesgagnitude of the field inside the chain in terms of the inci-
the length of the chain. It is instructive to rewrite E49) in  dent amplitudeE,, at the resonance frequency. Spatial distri-

terms ofty: bution of the field in the local polariton state can be found to
have the fornE = E4 exp(—|n—ny|xa). Matching this expres-
_ to sion with the outcoming field equal 16;,t exp(kL) one has
t= (1+e)+iexp —ikL)I'tocosthka(N—2ny+1)]" for the field amplitude at the defect atoffy,
(22)
Eq=Ej,texp(—ikL) exg (N—ng) xa]. (26)

This expression describes the resonance tunneling of the
electromagnetic waves through the chain with the defect.

The resonance occurs when For |t| being of the order of one in the resonance this expres-
sion describes the drastic exponential enhancement of the
1+e=0 (23) incident amplitude at the defect side due to the effect of the

resonance tunneling.

the transmission in this case becomes independent of the Equations(22) and (24) demonstrate that the resonance
system size. Substituting the definition of the parameter tunneling via local polariton states is remarkably different
given by Eq.(20) into Eq. (23), one arrives at an equation from other types of resonance tunneling phenomena, such as
identical to Eq.(12) for the frequency of the local polariton €lectron tunneling via an impurity staté,or through a
state with the parameter of the spatial dispersiobeing set  double barrier. The most important fact is that the frequency
to zero. The transmission takes a maximum value when thBrofile of the resonance does not have the typical symmetric

defect is placed in the middle of the chaM;-2n,+1=0, Lorentzian shape. Ab={), the parametes diverges caus-
and in this case ing the transmission to vanish. At the same time the reso-

nance frequency, is very close toQ); as it follows from
1 Eqg. (12). This results in strongly asymmetric frequency de-
2~ ~ pendence of the transmission, which is skewed toward lower
|tmax] 2 = 1 (24) .
r frequencies.
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The transmission vanishes precisely at two frequencies: anteratomic spacinga. The spatial dispersion, however,
the low-frequency band edg®, and at the frequency), makes conditions for the resonant tunneling much less re-
associated with the vibrational motion of the defect atom. Atstrictive. In order to estimate the effect of the dissipation in
the same time, the behavior of the transmission coefficient ithe presence of the spatial dispersion one can rely upon Eq.
the vicinities of these two frequencies is essentially different(22) assuming that the dispersion only modifies the param-
at the band edge it ise®— Q32)? exp(- 1/\Jw?—Q3Z), while  eter e, but does not effect the general expression for the
at the defect frequency the transmission goes to zero dgansmission. This assumption is justified by the numerical
(0?—0?)2. These facts can be used to predict several effectgesults of Ref. 9 and the present paper, which show that the
that would occur with the increase of the concentration of thdransmission properties in the presence of the spatial disper-
defects. First, one can note that with the increase of concer§ion do not differ significantly from the analytical calcula-
tration of the impurities frequenc§2; becomes eventually tions performed for the chain of noninteracting dipoles. Ac-
the boundary of the new polariton gap when all the originalcording to Eq.(12), the interatomic interaction moves the
host atoms will be replaced by the defects atoms. One caf¢Sonance frequency further away frdy undermining the
conclude then that the zero of the transmissiof ainstead ~ influence of the damping and leading to a weaker inequality:
of being washed out by the disorder, would actually becomd {21)/®<1. This condition can be easily fulfilled, even for
more singular. More exactly one should expect that the frePhonons with a relatively small negative spatial dispersion.
quency dependence of the transmission in the vicinitpef ~ For the imaginary part, at the resonance one can obtain
will exhibit a crossover from the simple power decrease tdfom Eq.(28) the following estimate:
the behavior with exponential singularity associated with the .
band edge. Second,pif one takes into account such factors as s2~min[(4y¢)/(ad®), (yQy)/]. (29
spatial dispersion or damping, which prevent transmissiorrhe requirement that, be much smaller thah, leads to the
from exact vanishing, one should expect that the abovefollowing restriction for the length of the syster
mentioned crossover to the more singular behavior wouldg(1/x)|In[e,]|, with &, given above. The maximum value of
manifest itself in the form of substantial decrease of thene field at the defect site attainable for the defect located in

transmission in the vicinity of); with an increase of the the center of the chain is then found |&|~|E;||t|/eo.
concentration. Numerical calculations discussed in the next

section of the paper show that this effect does take place
even at rather small concentration of the defects.
Resonance tunneling is very sensitive to the presence of
relaxation, which phenomenologically can be accounted for In this section we present results of numerical Monte
by adding 2yw to the denominator of the polarizabilif§, = Carlo simulations of the transport properties of the system
wherey is an effective relaxation parameter. This will make under consideration in the case of randomly distributed iden-
the parametee complex valued, leading to two important tical defects. If spatial dispersion is taken into account the
consequences. First, the resonance condition becomesgular Maxwell boundary conditions must be comple-
Re()=—1, and it can be fulfilled only if the relaxation is mented by additional boundary conditions regulating the be-
small enough. Second, the imaginary parteofvill prevent  havior of polarizationP at the ends of the chain. In our
the exponential factdy, in Eq. (22) from canceling out at the previous papérwe calculated the transmission for two types
resonance. This restricts the length of the system in whiclof boundary conditionsPy=Py=0, which corresponds to
the resonance can occur and limit the enhancement of thiae fixed ends of the chain, afy=P;, Py_;=Py, which
field at the defect. These restrictions though are not specificorresponds to the relaxed ends. We reported in Ref. 9 that
for the system under consideration and affect experimentahe transmission is very sensitive to the boundary conditions
manifestation of any type of resonant tunneling phenomwith fixed ends being much more favorable for the reso-
enon. nance. Our present numerical results obtained with an im-
Since we are only concerned with a frequency region inproved numerical procedure and the analytical calculations
the vicinity of ()4, reale; and imaginary, parts ofe can be  do not confirm this dependence of the resonant tunneling

11l. ONE-DIMENSIONAL DIPOLE CHAIN WITH FINITE
CONCENTRATION OF IMPURITIES

approximately found as upon the boundary conditions. In the case of a single impu-
rity we find that for both types of the boundary conditions
0,a AQ? w?— Qf the transmission demonstrates sharp resonance similar to that
e1=d? (27)  found in Ref. 9 for fixed ends. Similarly, for a finite concen-

2C 2__ 2 2_02\2 2 27 - X . A
d*=A0% (0"~ 021 +47e tration of impurities we did not find any considerable differ-

ences in the transmission for both types of boundary condi-
2yw tions. We conclude that the actual form of the boundary
1 (28 conditions is not signifi i

gnificant for the resonant tunneling.
The transfer matrix, Eq13), along with the definition of

It follows from Eq. (27) that the resonance occurs only if the transfer matrix, Eq(14), and the boundary conditions
(4yc)/(ad®)<1. This inequality has a simple physical chosen in the form of fixed terminal points, provides a basis
meaning: it ensures that the distance between the resonanieg our computations. However, it turns out that straightfor-
frequencyw, and() 1, where the transmission goes to zero, isward use of Eq(13) in the gap region is not possible because
greater than the relaxation parameterThis is a rather strict of underflow errors arising when one pair of eigenvalues of
condition that can only be satisfied for high-frequency oscil-the transfer matrix becomes exponentially greater than the
lations with large oscillator strength in crystals with large second one. In order to overcome this problem we develop a

gr=——5¢€
02— 03



11 344

Transmission coefficient

0.300

0.250

0.200

0.150

0.100

0.050

0.000

1.340

LEV I. DEYCH, A. YAMILOV, AND A. A. LISYANSKY

M (1) c=02%
L (2) c=04%
(3) c=0.6%
P 4)c=08%
| (5)c=1.0%

1342

_______———i

1344

1.346 1348

1350

1352 1.354

Normalized frequency

PRB 59

0.6

(1) ¢=2.0%
(2) ¢=2.6%
(3)c=3.2%
(4) c=3.8%

0.5 —

04 —

03—

02—

Transmission coefficient

0.1 —

0.0
1330

1.335 1.340 1.345 1.355

Normalized Frequency

FIG. 1. Frequency dependence of the averaged transmission co- FIG. 2. The same as in Fig. 1 but for intermediate concentra-
efficient for small concentrations of the defects. The frequency idions.
normalized by the fundamentat€ 0) frequency of the pure chain,
Q. The low-frequency boundary of the polariton gap is «at
~1.3 and is not shown here.

entire chain to verify that the averaged transmission reveals
a reliable information about the transport properties of the
system.

computational approach based upon the blend of the transfer- The results of the computations are presented in the fig-
matrix method with the invariant embedding ideas. The CeNures below. Figures 1 —3 show an evolution of the transmis-
tral element of the method is a4 matrix S(N) that de-  sjon with the increase of the concentration of the impurities.
pends upon the system si2é¢ The complex transmission |n Fig. 1 one can see the change of the transport properties at
coefficientt is expressed in terms of the elements of thissmall concentrations up to 1%. The curve labelBdshows,

matrix as basically, the single impurity behavior averaged over random
) positions of the defect. With an increase of the concentration
t=2exp —ikL)(SytSpp). (30 there is a greater probability for twtor more defects to
The matrixS(N) is determined by the following nonlinear form a (_:Iuster resulting in splitti_ng a single resonance fre-
recursion: guency in two or more frequencies. The double-peak struc-
ture of the curveg?2) and (3) reflects these cluster effects.
S(IN+1)=TyXE(N)XS(N), (31)  With the further increase of the concentration the clusters’
sizes grow on average leading to multiple resonances with
where matrix=(N) is given by distances between adjacent resonance frequencies being too
_ _ small to be distinguished. Curv®) in Fig. 1 reflects this
E(N)={I=S(N)XHX[1=T(N) ]} . (32 transformation, which marks a transition between individual
The initial condition to Eq(31) is given by tunneling resonances and the defect-induced band. The con-
centrations in this transition region is such that an average
S(0)=(G+H) L, (33  distance between the defects is equal to the localization

length of the individual local statds,;. The collective lo-
where matricess andH are specified by the boundary con- calization length at the frequency of the transmission peak
ditions. The derivation of Eq30)—(33) and more detailed |2';1‘—§;n becomes equal to the length of the chain at approxi-
discussion of the method is given in the Appendix. The tesinately the same concentration that allows us to suggest a

of the algorithm based upon recursion formi&) proves  simple linear relationships between the two lengths. The nu-
the method provides accurate results for transmission coeffi-

cients as small as 16°.

In our simulations we fix the concentration of the defects
and randomly distribute them among the host atoms. The
total number of atoms in the chain is also fixed; the results
presented below are obtained for a chain consisting of 1000:
atoms. For the chosen defect frequen@y,~1.354), the
localization length of the local polariton stdtg, is approxi-
mately equal to 150 interatomic distances. The transmission
coefficient is found to be extremely sensitive to a particular
arrangements of defects in a realization exhibiting strong
fluctuations from one realization to another. Therefore, in

-
=}
.2

S
3]

anmission ce:

Tr:

order to reveal the general features of the transmission inde-

pendent of particular positions of defects, we average the
transmission over 1000 different realizations. We have also
calculated the averaged Lyapunov expongé inverse lo-
calization lengthl 4., characterizing transport through the
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FIG. 3. The same as in Fig. 1 but for large concentrations.
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FIG. 4. Concentration dependence of the collective localization FIG. 6. Concentration dependence of the semiwidth of the de-
lengthl ¢hqin NOrmalized by the system’s size fect band. The solid line represents fit with power functich
wherev~0.8.
merical results presented in Fig. 4 clearly demonstrate this

linear concentration dependencelBf, at small concentra- with an increase of the concentration, reaching the value of
tions. For larger concentrations one can see from Figs. 2 angbproximately 17/ at a concentration as small as 3%. Such
3 that the peak of the transmission coefficient develops into a small localization length corresponds to the transmission of
broad structure. This marks further development of the dethe order of magnitude of 167, which is practically zero in
fect pass band. Curves in Fig. 2 show the transmission coebur computation. Further increase of the concentration does
ficient at intermediate concentrations, where localizatiomot change the minimum localization length. These results
lengthl ¢ain is bigger than the length of the system only in apresent an interesting example of the defects building up a
small frequency region around the maximum of the transmishoundary of the forbidden gap.
sion, and Fig. 3 presents a well developed pass band with This figure also shows the development of the pass band
multipeak structure resulting from geometrical resonances ab the left of(), presented above in Figs. 1-3, but at a larger
the boundaries of the system. scale. We cannot distinguish here the details of the frequency
These figures reveal an important feature of the defeciependence, but the transition from the single resonance be-
polariton band: its right edge does not move with increase ohavior to the pass band, marked by the significant flattening
the concentration. The frequency of this boundary is exactiyf the curve, is clear.
equal to the defect frequen€y; (which is normalized by, Figure 6 presents the concentration dependence of the
in the figureg, and the entire band is developing to the left of semiwidth 5,, of the defect band. The semiwidth is defined
), in complete agreement with the arguments based upon a4 the difference between the frequency of the maximum
analytical solution of the single-impurity problem. More- transmission and the right edge of the band. One can see that
over, the magnitude of the transmission in the vicinitybf  all the points form a smooth line with no indication of a
decreases with an increase of the concentration also in agreghange of the dependence with the transition between differ-
ment with our remarks at the end of the previous sectionent transport regimes. Attempts to fit this curve showed that
Figure 5 presents the inverse localization lenigth;,, nor- it is excellently fitted by the power law,,«c” with »=0.8
malized by the length of the chain for three different concenin all studied concentration range. The reason for this behav-
trations. It can be seen thag..(Q,) significantly grows ior and why it is insensitive to the change of the character of

the transport requires further study.
20.0

et IV. CONCLUSION
15.0 | (3)c=3.0%
In this paper, we considered one-dimensional resonance
tunneling of scalar “electromagnetic waves” through an op-
100 - tical barrier caused by a polariton gap. The tunneling is me-

diated by local polariton states arising due to defect atoms

Whain

2 embedded in an otherwise ideal periodic chain. We also nu-
S0 . k merically studied how a defect-induced propagating band
1 emerges from these resonances when the concentration of
0o | | | 3 | defects increases.
1320 1325 1330 1335 1340 1345 1350 1355 It is important to emphasize the difference between the

situation considered in our paper and other types of tunneling
phenomena discussed in the literature. The tunneling of elec-
FIG. 5. Frequency dependence of the Lyapunov exponent of thfomagnetic waves through photonic crystals and electron
entire chain for several concentrations in the frequency region ofunneling, despite all the difference between these phenom-
the defect band. ena, share one common feature. In both cases, the resonance

Normalized Frequency
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occurs due to defects that have dimensions comparable withidth of the resonance, which develops into a pass band with
wavelengths of the respective excitatioiedectrons interact an increase in concentration, does not manifest any transfor-
with atomic impurities, and long-wave electromagneticmation when the character of transport changes. The concen-
waves interact with macroscopic distortions of the photonidration dependence of the width was found to be extremely
crystald. In our case the wavelength of the propagating exWell described by a power law with an exponent approxi-
citations is many orders of magnitude greater than dimenmately equal to 0.8. The nature of this behavior awaits an
sions of the atomic defects responsible for the resonanc&Xplanation.

The physical reason for such an unusual behavior lies in the

nature of local polaritons. These states are formed owing to APPENDIX: INVARIANT EMBEDDING ALGORITHM

the presence of internal polariton-forming excitations. The FOR THE TRANSFER-MATRIX EQUATION

spatial extent of these states is much larger than the geo-

metrical dimensions of atomic defects and is comparable tg In this appendix we c_ievelop an invariant embedding ap-
the wavelength of the incident radiation. proach to transfer-matrix equations of a general form and

We presented an exact analytical solution of the tunnelin E(r:luc;e eErq?/(\:/%g);é?]?i df;e: tforig?%%g::geczlcxgé?qniflrt]he
of electromagnetic waves through a chain of noninteractin ] paper. yp q

atoms with a single defect. This solution provides insight ansfer-matrix method,

into the nature of the phenomenon under consideration and U =Tou (A1)

allows one to obtain an explicit expression for the magnitude n+iT In¥ne

Of the electromagnetic f|e|d at the defect Site. The eXpI’eSSiOWith boundary Conditions Of a genera' form:

derived demonstrates that the field is strongly enhanced at

the resonance with its magnitude growing exponentially with Gugt+Huy=v. (A2)

an increase of the length of the system. This effect is an

electromagnetic analog of the charge accumulation in thélereu, is a vector of an appropriate dimension that charac-

case of electron tunneling, where it is known to cause interterizes the state of the system at tith site, T, is a respec-

esting nonlinear phenomeh&? tive transfer matrix;G and H are matrices of the same di-
An analytical solution of the single-defect problem al- mension as the transfer matrix, together with the veetor

lowed us to make predictions regarding the transport propetthey specify boundary conditions at the left and right bound-

ties of the system with multiple randomly located defects.aries of the systertrites 0 and\, respectively. The regular

The most interesting of these is that the dynamical frequencivlaxwell boundary conditions and the fixed ends boundary

of the defects(),, sets a high-frequency boundary for the condition for polarization can be presented in the form Eq.

defect-induced pass band, which does not move with increagA2) with the following matricesG,H, and vectow:

ing concentration of defects. Numerical Monte Carlo simu-

lations confirmed this assumption and showed that the direct

interaction between the atonispatial dispersiondoes not

affect resonance tunneling considerably, though it adds inter- g=

esting features to it. One of them is the behavior of the trans-

mission in the vicinity of(2;. In absence of the spatial dis-

persion, the transmission at this point is exactly equal to

zero, and remains small when the interaction is taken into

account. The interesting fact revealed by the numerical

analysis is that the transmission 8t decreases with an

increase in the concentration of the defects and nearly ap-

proaches zero at concentrations as small as 3%. This fact can

be understood in light of the transfer-matrix approach: if the

frequency(); corresponds to the eigenvalue of the defect'sThese matrices are singular, but one should not worry about
transfer matrix, which significantly differs from one, the this, because we will only need to invert their sum, which
transmission will diminish strongly each time the wave en-has a nonzero determinant. In accordance with the ideas of

counters a defect site, regardless the order in which the dghe invariant embedding methdve consider the dynamic
fects are located. Numerical results also demonstrated a tragectoru, as a function of the current site the length of the

sition between two transport regimes: one associated witBystemN, and the boundary vectar:

resonance tunneling and the other occurring when the reso-

nances spatially overlap and a pass band of extended states up,=u(n,N,v)=S(n,N)v. (A4)

emerges. The transition occurs when the average distance

between the defects becomes equal to the localization length the last equation we use the linear nature of &dl) in

of the single local state. At the same time the collectiveorder to separate out the dependence upon the vectub-
localization length at the peak transmission frequency, chasstituting Eq.(A4) into Egs.(Al) and (A2) we have the dy-
acterizing the transport properties of the entire chain, benamical equation and boundary conditions for the marix
comes equal to the total length of the system. This result

assumes the linear dependence of this collective localization S(n+1N)=T,x3(n,N), (A5)

length upon concentration, which we directly confirm for

small concentrations. Numerical results also showed that the GXS(ON)+HXS(N,N)=1, (AB6)

0 1 i

0 0

—-i 0 -1 —-i 0 O
1 0
1 0

o O - -
o

(A3)

S O NN
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wherel is a unit matrix. The matrixg(n,N+1), which de- Introducing notation

scribes the system with one additional scatterer, obviously _ .

satisfies the same equati¢A5) as S(n,N). Relying again E(N)={I=S(N,N) xHX[1 =T(N)]} (A14)
upon the linearity of Eq(AS) we conclude tha§(n,N) and  the previous expression can be rewritten in the following
S(n,N+1) can only differ by a constariindependent oh)  compact form:

matrix factor A(N):

S(N,N+1)=E(N)XS(N,N). (A15)
S(n,N+1)=5(n,N) X A(N). (A7) ) ) . )
Inserting Eq.(A15) into Eq. (A12) we finally obtain

In order to findA (N) we first substitute Eq A7) into bound-
ary conditions Eq(A6) which yield S(n,N+1)=5(n,N)+S(n,N)XHX[I=T(N)]XE(N)

A(N)=GXS(ON+1)+HXS(N,N+1). (A8) X S(N,N). (A16)
Boundary conditions EqA6) do not change i is replaced ~ This equation still has an unknown quant¢N,N) which
by N+ 1, therefore we can write down that must be determined separately. We achieve this by combin-

ing the original transfer-matrix equatiqAl) and Eq.(A15)
GXS(ON+1)=1-HXS(N+1N+1). (A9)  to obtain the following:

Substituting this expression into EGA8) we have for the SN+ 1N+1)=TyXZ(N) X S(N,N). (A17)
matrix A (N): ' '

Equation(A17) is a nonlinear matrix equation with an initial
A(N)=1+HX[S(N,N+1)—S(N+1N+1)]. condition given by
(A10)

The quantity S(N+1,N+1) can be eliminated from this (G+H)xS(0,0=1. (A18)
equation by means of Eq.(Al): S(N+1N+1) Equations(30)—(33) of the main body of the paper coincide
=Ty S(N,N+1), and we have foA (N) with Egs.(A16)—(A18) with simplifyed notation for the ma-

trix S where we dropped the second argument. They consti-

AN)=T+HX[I=T(N)]XS(N,N+1). (All) tute the complete set of embedding equations for the

Substituting this formula into EqA7) we obtain the equa- transfgr-matrix problem. In .order to finc! the transmission
tion that governs the evolution of the matfn,N) with the ~ CO€fficient one has to multiply the matr&(N,N) by the

change of the paramett: bou_ndary vectop; the first component of the resulting vec-
tor is equal taexp(kL), wheret is the complex transmission
S(n,N+1)=S(n,N)+S(n,N) X HX[I1=T(N)] coefficient. If one is interested in the distribution of the state
vectoru(n,N) throughout the entire system, one has to find
XS(N,N+1). (A12)  g(N,N) and then to solve EqA16).

This equation, however, is not closed because of an unknown The presented algorithm was proved to be extremely
matrix S(N,N+1). This matrix can be found by setting  Stable, it produced reliable results for transmission as small

=N in Eq. (A12): as 10 Y. This stability is due to the operation of inversion
involved in the calculationgsee Eq.(A14)]. This operation
S(N,N+1)={1—S(N,N) X HX[I=T(N)]} 1S(N,N). prevents elements of the mati$to grow uncontrollably in

(A13) the course of the calculations.
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